Advertisement

Journal of Materials Science

, Volume 44, Issue 7, pp 1787–1792 | Cite as

Synthesis, structure, and mesomorphic properties of main-chain liquid-crystalline ionomers containing sulfonate groups

  • X. Y. Xu
  • B. Y. ZhangEmail author
  • W. M. Gu
  • L. X. Wang
Article

Abstract

The mesogenic monomer M and a series of main-chain liquid crystalline ionomers (LCIs) containing sulfonate groups were synthesized. The LCIs were prepared by an interfacial condensation reaction of mesogenic monomer 1,4-phenylene-dicarbonic acid bis (4-carboxyl phenyl) ester, brittle yellow (BY), 1,10-sebacoyl dihydroxy, and 1,12-dodecanedioyl dihydroxy. The sulfonate groups introduced to the main-chain backbone were confirmed by ultraviolet spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry (DSC), thermo gravimetric (TG), and polarizing optical microscopy (POM). Experimental results demonstrated that the glass-transition temperatures increased slightly, melting temperature decreased, and the mesophase temperature ranges increased first and then decreased with increasing content of sulfonate group. All of the polymers were thermally stable up to 320 °C. The LCIns exhibited typical nematic schlieren textures.

Keywords

Differential Scanning Calorimetry Dihydroxy Sulfonate Group Thionyl Chloride Polarize Optical Microscope 

Notes

Acknowledgements

The authors are grateful to National Natural Science Fundamental Committee of China and HI-Tech Research and development program (863) of China.

References

  1. 1.
    Zhang BY, Meng FB, Zang BL, Hu JS (2003) Macromolecules 36(9):3320CrossRefGoogle Scholar
  2. 2.
    Hu JS, Zhang BY, Jia YG, Chen S (2003) Macromolecules 36(24):9060CrossRefGoogle Scholar
  3. 3.
    Meng FB, Zhang BY, Liu LM, Zang BL (2003) Polymer 44(14):3935CrossRefGoogle Scholar
  4. 4.
    Donald AM, Windle AH (1992) Liquid crystalline polymers. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Paul DR, Newman S (1978) Polymer blends. Academic Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Xue Y, Hara M (1998) Macromolecules 31(22):7806CrossRefGoogle Scholar
  7. 7.
    Weiss RA, Ghevbremeskela Y, Charbonneaub L (2000) Polymer 41(9):3471CrossRefGoogle Scholar
  8. 8.
    He J, Liu J (1999) Polymer 40(6):959CrossRefGoogle Scholar
  9. 9.
    Zhang BY, Weiss RA (1992) J Polym Sci Part A Polym Chem 30(1):91CrossRefGoogle Scholar
  10. 10.
    Zhang BY, Weiss RA (1992) J Polym Sci Part A Polym Chem 30(6):989CrossRefGoogle Scholar
  11. 11.
    Xue Y, Hara M, Yoon HN (1998) Macromolecules 31(6):1808CrossRefGoogle Scholar
  12. 12.
    Wilber G, Cochin D, Zentel R (1996) Macromol Chem Phys 197(10):3259CrossRefGoogle Scholar
  13. 13.
    Zang BL, Hu JS, Meng FB, Zhang BY (2004) J Appl Polym Sci 93(6):2511CrossRefGoogle Scholar
  14. 14.
    Lin Q, Passatta J, Wang ZH, Ratta V (2002) Polym Int 51(7):540CrossRefGoogle Scholar
  15. 15.
    Xue YP, Hara M (1997) Macromolecules 30(13):3803CrossRefGoogle Scholar
  16. 16.
    Zhi JG, Zhang BY, Zang BL, Shi GH (2002) J Appl Polym Sci 85(10):2155CrossRefGoogle Scholar
  17. 17.
    Tian M, Zhang BY, Meng FB, Zang BL (2006) J Appl Polym Sci 99(3):1254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • X. Y. Xu
    • 1
  • B. Y. Zhang
    • 1
    Email author
  • W. M. Gu
    • 1
  • L. X. Wang
    • 1
  1. 1.The Centre for Molecular Science and EngineeringNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations