Advertisement

Journal of Materials Science

, Volume 44, Issue 7, pp 1793–1799 | Cite as

Dielectric and pyroelectric studies of Li-modified rare-earth dysprosium-doped barium strontium sodium niobate ceramics

  • K. Chandramouli
  • Ramam KoduriEmail author
Article

Abstract

This paper highlights the dielectric, pyroelectric, and resistivity studies of Ba1.45Sr2.4Dy0.1LixNa2−xNb10O30 (x = 0 ≤ x ≤ 1.0) tungsten–bronze-structured ceramics. X-ray diffraction studies indicated single orthorhombic (mm2) phase supported by tolerance factor and average electronegativity difference. The lattice parameters, unit cell volume, axial ratio, and densities are calculated from XRD studies. The experimental densities obtained are about 95% to that of theoretical values. It is found that the unit cell volume enhanced up to Li0.8. The effect of Li modification and Dy doping on εRT, \( \varepsilon_{{{\text{T}}_{\text{c}} }}, \) and Tc in BSNN system are discussed. D.C. resistivity studies indicated the positive temperature coefficient of resistivity (PTCR) response in these compositions.

Keywords

Tolerance Factor Positive Temperature Coefficient Tungsten Bronze Pyroelectric Coefficient Barium Copper 

Notes

Acknowledgements

The authors would like to thank Andhra University, Visakhapatnam, India, and University of Concepcion, Chile. The authors acknowledge Ms. C. N. Devi, Mr. Ranganathan, and Mr. Krishnamurthy for their valuable technical support extended during this work.

References

  1. 1.
    Neurgaonkar RR, Nelson JG, Oliver JR (1990) Mater Res Bull 25:959CrossRefGoogle Scholar
  2. 2.
    Hirano H, Takei H, Koide S (1969) J Appl Phys 8:172CrossRefGoogle Scholar
  3. 3.
    Lenzo PV, Spencer EG, Ballman AA (1969) Appl Phys Lett 11:972Google Scholar
  4. 4.
    Glass M (1969) J Phys 40:4699Google Scholar
  5. 5.
    Yamanchi H (1978) Appl Phys Lett 32:599CrossRefGoogle Scholar
  6. 6.
    Nakano J, Yamada T (1975) J Appl Phys 46:2361CrossRefGoogle Scholar
  7. 7.
    Brenden I, Kennedy J, Hunter BA (1999) J Mater Res Bull 34:1263CrossRefGoogle Scholar
  8. 8.
    Mergen A, Lee WE (1997) J Mater Res Bull 32:175CrossRefGoogle Scholar
  9. 9.
    El Haimouti A, Zambon D, El-Ghozzi M, Avignant D, Leroux D, El Aatmani M, Daoud M (2003) Mater Res Bull 38:1423CrossRefGoogle Scholar
  10. 10.
    Kahoul A, Nkeng P, Hammouche A, Nâamoune F, Poillert G (2001) J Solid State Chem 161:397CrossRefGoogle Scholar
  11. 11.
    Singh S, Sati R, Choudhary RNP (1992) J Mater Sci Lett 11:788CrossRefGoogle Scholar
  12. 12.
    Zheng XH, Chen XM (2003) Solid State Commun 125:449CrossRefGoogle Scholar
  13. 13.
    Panigrahi A, Singh NK, Choudhary RNP (1999) J Mater Sci Lett 18:1579CrossRefGoogle Scholar
  14. 14.
    Li J, Chen XM, Wu YJ (2002) J Eur Ceram Soc 22:87CrossRefGoogle Scholar
  15. 15.
    Dong M, Reau JM, Ravez J (1996) Solid State Ionics 91:183CrossRefGoogle Scholar
  16. 16.
    Bu S, Chun D, Park G (1997) Jpn J Appl Phys 36:4351CrossRefGoogle Scholar
  17. 17.
    Lines E, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, OxfordGoogle Scholar
  18. 18.
    Subba Rao PSV, Sambasiva Rao K (1990) Ferroelectrics 102(1):183CrossRefGoogle Scholar
  19. 19.
    Santos A, Garcia D, Eiras JA (2001) Ferroelectrics 257:105CrossRefGoogle Scholar
  20. 20.
    Scheerer’s D, Gottin P (1918) Nachricht 2:98Google Scholar
  21. 21.
    Chandramouli K, Viswarupachary P, Ramam K (2008) J Mater Sci Mater Electron. doi: https://doi.org/10.1007/s10854-008-9818-7 Google Scholar
  22. 22.
    Chandramouli K, Srinivas Reddy G, Ramam K (2008) Scr Mater 59(2):235CrossRefGoogle Scholar
  23. 23.
    Chandramouli K, Viswarupachary P, Naidu MS (2005) Ferroelectrics 325:3CrossRefGoogle Scholar
  24. 24.
    Bijumon PV, Kohli V, Prakash Om, Varma MR, Sebastian MT (2004) Mater Sci Eng B 113:13CrossRefGoogle Scholar
  25. 25.
    Sambasiva Rao K, Prasad TNVKV, Vallishnath N, Lee JH, Cho S-H (2003) Ferroelectr Lett 30:25CrossRefGoogle Scholar
  26. 26.
    Neurgaonkar RR, Cory WK, Oliver JR, Clark WWIII, Wood GL, Miller MJ, Sharp EJ (1987) J Cryst Growth 84:629CrossRefGoogle Scholar
  27. 27.
    Garcia D (1995) PhD Thesis, University of Siio Paulo, SBo Carlos—SP, BrazilGoogle Scholar
  28. 28.
    Sambasiva Rao K, Koteswara Rao K, Viswarupachary P (1991) Proc Natl Acad Sci India 69:IGoogle Scholar
  29. 29.
    Sambasiva Rao K, Jagga Rao PS, Rama Rao K, Prasada Rao AV, Robin AI, Tandon RP (1993) Indian J Pure Appl Phys 31:43Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Solid State Physics and Materials Research Laboratory, Department of PhysicsAndhra UniversityVisakhapatnamIndia
  2. 2.Departmento de Ingenieria de Materials, (DIMAT), Facultad de IngenieriaUniversidad de ConcepcionConcepcionChile

Personalised recommendations