Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1404–1406 | Cite as

Effect of inert filler addition on microstructure and strength of porous SiC ceramics

  • Su-Ho Chae
  • Young-Wook Kim
Letter

Porous ceramics are of technological interest because of their unique characteristics such as low density, low thermal conductivity, high thermal shock resistance, high permeability, and high specific strength [1, 2, 3, 4, 5]. Specifically, porous silicon carbide (SiC) ceramics are used as molten metal filters, diesel particulate filters, and preforms for metal matrix composites on account of their excellent permeability, thermal shock resistance, specific strength, and corrosion resistance at high temperatures [6, 7, 8, 9]. Different processing routes for porous SiC ceramics have been developed for specific applications to satisfy the associated requirements of porosity, pore size, and degree of interconnectivity. These manufacturing techniques include replica techniques [10, 11], sacrificial template techniques [12, 13], and reaction techniques [8, 14]. Recently, a new processing method for fabricating porous SiC ceramics was developed based on the following strategy [15, 16]: (1)...

Keywords

Y2O3 Flexural Strength Polysiloxane Carbothermal Reduction Thermal Shock Resistance 

Notes

Acknowledgement

This study was supported by the Korea Science and Engineering Foundation (KOSEF) Grant (R01-2008-000-20057-0) funded by the Korean government (MEST).

References

  1. 1.
    Ohzawa Y, Cheng X, Achiha T, Nakajima T, Groult H (2008) J Mater Sci 43:2812. doi: https://doi.org/10.1007/s10853-008-2537-x CrossRefGoogle Scholar
  2. 2.
    Qiu SJ, Gao C, Zheng XD, Chen J, Yang C, Gan XX, Fan HQ (2008) J Mater Sci 43:3094. doi: https://doi.org/10.1007/s10853-008-2515-3 CrossRefGoogle Scholar
  3. 3.
    Eom JH, Kim YW (2007) Met Mater Int 13:521CrossRefGoogle Scholar
  4. 4.
    Lee HS, Kim JG, Choi DJ (2008) J Mater Sci 43:5574. doi: https://doi.org/10.1007/s10853-008-2811-y CrossRefGoogle Scholar
  5. 5.
    Todo M, Kuraoka H, Kim J, Taki K, Ohshima M (2008) J Mater Sci 43:5644. doi: https://doi.org/10.1007/s10853-008-2881-x CrossRefGoogle Scholar
  6. 6.
    Suwanmethanond V, Goo E, Liu PKT, Johnston G, Sahimi M, Tsotsis TT (2000) Ind Eng Chem Res 39:3264CrossRefGoogle Scholar
  7. 7.
    Kitaoka S, Matsushima Y, Chen C, Awaji H (2004) J Am Ceram Soc 87:906CrossRefGoogle Scholar
  8. 8.
    Herzog A, Klingner R, Vogt U, Graule T (2004) J Am Ceram Soc 87:784CrossRefGoogle Scholar
  9. 9.
    Kim YW, Chun YS, Nishimura T, Mitomo M, Lee YH (2007) Acta Mater 55:727CrossRefGoogle Scholar
  10. 10.
    Zhu X, Jiang D, Tan S (2002) Mater Sci Eng A 323:232CrossRefGoogle Scholar
  11. 11.
    Sherman AJ, Tuffias RH, Kaplan RB (1991) Am Ceram Soc Bull 70:1025Google Scholar
  12. 12.
    Chi W, Jiang D, Huang Z, Tan S (2004) Ceram Int 30:869CrossRefGoogle Scholar
  13. 13.
    Kim YW, Kim SH, Kim HD, Park CB (2004) J Mater Sci 39:5647. doi: https://doi.org/10.1023/B:JMSC.0000040071.55240.85 CrossRefGoogle Scholar
  14. 14.
    Esposito L, Sciti D, Piancastelli A, Bellosi A (2004) J Eur Ceram Soc 24:533CrossRefGoogle Scholar
  15. 15.
    Eom JH, Kim YW, Song IH, Kim HD (2007) Mater Sci Eng A 464:129CrossRefGoogle Scholar
  16. 16.
    Kim YW, Eom JH, Wang C, Park CB (2008) J Am Ceram Soc 91:1361CrossRefGoogle Scholar
  17. 17.
    Soraru GD, Pederiva L, Latournerie J, Raj R (2002) J Am Ceram Soc 85:2181CrossRefGoogle Scholar
  18. 18.
    Kim YW, Kim JY, Rhee SH, Kim DY (2000) J Eur Ceram Soc 20:945CrossRefGoogle Scholar
  19. 19.
    Grande T, Sommerset H, Hagen E, Wiik K, Einarsrud MA (1997) J Am Ceram Soc 80:1047CrossRefGoogle Scholar
  20. 20.
    Winn EJ, Clegg WJ (1999) J Am Ceram Soc 82:3466CrossRefGoogle Scholar
  21. 21.
    Ihle J, Hermann M, Adler J (2005) J Eur Ceram Soc 25:1005CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringThe University of SeoulSeoulKorea

Personalised recommendations