Journal of Materials Science

, Volume 44, Issue 8, pp 1934–1951 | Cite as

Ceramic matrix composites containing carbon nanotubes

  • Johann Cho
  • Aldo R. BoccacciniEmail author
  • Milo S. P. ShafferEmail author


Due to the remarkable physical and mechanical properties of individual, perfect carbon nanotubes (CNTs), they are considered to be one of the most promising new reinforcements for structural composites. Their impressive electrical and thermal properties also suggest opportunities for multifunctional applications. In the context of inorganic matrix composites, researchers have particularly focussed on CNTs as toughening elements to overcome the intrinsic brittleness of the ceramic or glass material. Although there are now a number of studies published in the literature, these inorganic systems have received much less attention than CNT/polymer matrix composites. This paper reviews the current status of the research and development of CNT-loaded ceramic matrix composite (CMC) materials. It includes a summary of the key issues related to the optimisation of CNT-based composites, with particular reference to brittle matrices and provides an overview of the processing techniques developed to optimise dispersion quality, interfaces, and density. The properties of the various composite systems are discussed, with an emphasis on toughness; a comprehensive comparative summary is provided, together with a discussion of the possible toughening mechanism that may operate. Last, a range of potential applications are discussed, concluding with a discussion of the scope for future developments in the field.


Fracture Toughness Matrix Composite Silica Composite Ceramic Matrice Lower Percolation Threshold 


  1. 1.
    Chawla KK (2003) Ceramic matrix composites, 2nd edn. Springer, New YorkGoogle Scholar
  2. 2.
    Sternitzke M (1997) J Eur Ceram Soc 17(9):1061Google Scholar
  3. 3.
    Matthews FL, Rawlings RD (2003) Composite materials: engineering and science. Woodhead Publishing Limited, Cambridge, EnglandGoogle Scholar
  4. 4.
    Marshall DB, Evans AG (1985) J Am Ceram Soc 68(5):225Google Scholar
  5. 5.
    Brennan JJ, Prewo KM (1982) J Mater Sci 17(8):2371. doi: Google Scholar
  6. 6.
    Beyerle DS, Spearing SM, Zok FW, Evans AG (1992) J Am Ceram Soc 75(10):2719Google Scholar
  7. 7.
    Chawla KK (1998) Fibrous materials. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Bunsell A, Berger M (1999) Fine ceramic fibres. CRC Press, New YorkGoogle Scholar
  9. 9.
    Dicarlo JA (1985) J Met 37(6):44Google Scholar
  10. 10.
    Crivelli-Visconti I, Cooper GA (1969) Nature 221:754Google Scholar
  11. 11.
    Evans AG, Zok FW (1994) J Mater Sci 29(15):3857. doi: Google Scholar
  12. 12.
    Baughman R (2002) Science’s Compas 297(2):787Google Scholar
  13. 13.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287(5453):637Google Scholar
  14. 14.
    Kaneto K, Tsuruta M, Sakai G, Cho WY, Ando Y (1999) Synth Met 103(1–3):2543Google Scholar
  15. 15.
    Riggs JE, Walker DB, Carroll DL, Sun YP (2000) J Phys Chem B 104(30):7071Google Scholar
  16. 16.
    Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84(20):4613Google Scholar
  17. 17.
    Lau KT, Hui D (2002) Compos Part B-Eng 33(4):263Google Scholar
  18. 18.
    Thostenson ET, Ren ZF, Chou TW (2001) Compos Sci Technol 61(13):1899Google Scholar
  19. 19.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44(19):5893Google Scholar
  20. 20.
    Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, Peterson DE, Huang SM, Liu J, Zhu YT (2004) Nat Mater 3(10):673Google Scholar
  21. 21.
    Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Nature 363(6430):605Google Scholar
  22. 22.
    Ebbesen TW, Ajayan PM (1992) Nature 358(6383):220Google Scholar
  23. 23.
    Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Science 273(5274):483Google Scholar
  24. 24.
    Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS (1998) Appl Phys Lett 72(25):3282Google Scholar
  25. 25.
    Tibbetts GG, Gorkiewicz DW, Alig RL (1993) Carbon 31(5):809Google Scholar
  26. 26.
    Salvetat JP, Kulik AJ, Bonard JM, Briggs GAD, Stockli T, Metenier K, Bonnamy S, Beguin F, Burnham NA, Forro L (1999) Adv Mater 11(2):161Google Scholar
  27. 27.
    Shaffer MSP, Sandler JKW (2006) Processing and properties of nanocomposites. World Scientific, Singapore, pp 1–59Google Scholar
  28. 28.
    Andrews R, Jacques D, Qian DL, Rantell T (2002) Acc Chem Res 35(12):1008Google Scholar
  29. 29.
    Ramirez AP (2005) Bell Labs Tech J 10(3):171Google Scholar
  30. 30.
    Shaffer M, Kinloch IA (2004) Compos Sci Technol 64(15):2281Google Scholar
  31. 31.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624Google Scholar
  32. 32.
    Dai HJ (2002) Surf Sci 500(1–3):218Google Scholar
  33. 33.
    Boccaccini AR, Acevedo DR, Brusatin G, Colombo P (2005) J Eur Ceram Soc 25(9):1515Google Scholar
  34. 34.
    Arvantelis C, Jayaseelan DD, Cho J, Boccaccini AR (2008) Adv Appl Ceram 107(3):155Google Scholar
  35. 35.
    Harris PJF (2004) Int Mater Rev 49(1):31Google Scholar
  36. 36.
    Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Compos Sci Technol 67(5):922Google Scholar
  37. 37.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76(20):2868Google Scholar
  38. 38.
    Seeger T, Redlich P, Grobert N, Terrones M, Walton DRM, Kroto HW, Ruhle M (2001) Chem Phys Lett 339(1–2):41Google Scholar
  39. 39.
    Peigney A, Laurent C, Dumortier O, Rousset A (1998) J Eur Ceram Soc 18(14):1995Google Scholar
  40. 40.
    Laurent C, Peigney A, Dumortier O, Rousset A (1998) J Eur Ceram Soc 18(14):2005Google Scholar
  41. 41.
    Flahaut E, Peigney A, Laurent C, Marliere C, Chastel F, Rousset A (2000) Acta Mater 48(14):3803Google Scholar
  42. 42.
    Flahaut E, Peigney A, Laurent C, Rousset A (2000) J Mater Chem 10(2):249Google Scholar
  43. 43.
    Flahaut E, Rul S, Lefevre-Schlick F, Laurent C, Peigney A (2004) Ceram Nanomater Nanotechnol II 148:71Google Scholar
  44. 44.
    Peigney A (2003) Nat Mater 2(1):15Google Scholar
  45. 45.
    Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Chem Phys Lett 352(1–2):20Google Scholar
  46. 46.
    Peigney A, Laurent C, Flahaut E, Rousset A (2000) Ceram Int 26(6):677Google Scholar
  47. 47.
    Peigney A, Rul S, Lefevre-Schlick F, Laurent C (2007) J Eur Ceram Soc 27(5):2183Google Scholar
  48. 48.
    Rul S, Lefevre-schlick F, Capria E, Laurent C, Peigney A (2004) Acta Mater 52(4):1061Google Scholar
  49. 49.
    An JW, You DH, Lim DS (2003) Wear 255:677Google Scholar
  50. 50.
    Lim DS, You DH, Choi HJ, Lim SH, Jang H (2005) Wear 259(1–6):539Google Scholar
  51. 51.
    Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Acta Mater 52(4):931Google Scholar
  52. 52.
    Xia Z, Curtin WA, Sheldon BW (2004) J Eng Mater Technol-Trans ASME 126(3):238Google Scholar
  53. 53.
    Xia ZH, Lou J, Curtin WA (2008) Scripta Mater 58(3):223Google Scholar
  54. 54.
    Kamalakaran R, Lupo F, Grobert N, Lozano-Castello D, Jin-Phillipp NY, Ruhle M (2003) Carbon 41(14):2737Google Scholar
  55. 55.
    Kamalakaran R, Lupo F, Grobert N, Scheu T, Jin-Phillipp NY, Ruhle M (2004) Carbon 42(1):1Google Scholar
  56. 56.
    Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N (2007) Int J Refract Metal Hard Mater 25(4):322Google Scholar
  57. 57.
    Jiang LQ, Gao L (2005) J Mater Chem 15(2):260Google Scholar
  58. 58.
    Jiang LQ, Gao L (2006) J Am Ceram Soc 89(1):156Google Scholar
  59. 59.
    Huang Q, Gao L (2005) Appl Phys Lett 86:123104Google Scholar
  60. 60.
    Huang Q, Gao L (2004) J Mater Chem 14(16):2536Google Scholar
  61. 61.
    Huang Q, Gao L, Liu YQ, Sun J (2005) J Mater Chem 15(20):1995Google Scholar
  62. 62.
    Huang Q, Gao L, Sun J (2005) J Am Ceram Soc 88(12):3515Google Scholar
  63. 63.
    Boccaccini AR, Thomas BJC, Brusatin G, Colombo P (2007) J Mater Sci 42(6):2030. doi: Google Scholar
  64. 64.
    Balazsi C, Konya Z, Weber F, Biro LP, Arato P (2003) Mater Sci Eng C-Bio Supramol Syst 23(6–8):1133Google Scholar
  65. 65.
    Balazsi C, Weber F, Kover Z, Konya Z, Kiricsi I, Biro LP, Arato P (2005) Fractogr Adv Ceram II 290:135Google Scholar
  66. 66.
    Balazsi C, Shen Z, Konya Z, Kasztovszky Z, Weber F, Vertesy Z, Biro LP, Kiricsi I, Arato P (2005) Compos Sci Technol 65(5):727Google Scholar
  67. 67.
    Balazsi C, Fenyi B, Hegman N, Kover Z, Weber F, Vertesy Z, Konya Z, Kiricsi I, Biro LP, Arato P (2006) Compos Part B-Eng 37(6):418Google Scholar
  68. 68.
    Balazsi C, Weber F, Kover Z, Shen Z, Konya Z, Kasztovszky Z, Vertesy Z, Biro LP, Kiricsi I, Arato P (2006) Curr Appl Phys 6(2):124Google Scholar
  69. 69.
    Balazsi C, Sedlackova K, Czigany Z (2008) Compos Sci Technol 68(6):1596Google Scholar
  70. 70.
    Zhan GD, Kuntz JD, Garay JE, Mukherjee AK (2003) Appl Phys Lett 83(6):1228Google Scholar
  71. 71.
    Zhan GD, Kuntz JD, Wan JL, Mukherjee AK (2003) Nat Mater 2(1):38Google Scholar
  72. 72.
    Wang J, Kou HM, Liu XJ, Pan YB, Guo JK (2007) Ceram Int 33(5):719Google Scholar
  73. 73.
    Ning JW, Zhang JJ, Pan YB, Guo JK (2003) Mater Sci Eng A Struct Mater 357(1–2):392Google Scholar
  74. 74.
    Shaffer MSP, Fan X, Windle AH (1998) Carbon 36(11):1603Google Scholar
  75. 75.
    Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Nanotechnology 17(6):1770Google Scholar
  76. 76.
    Du CS, Yeh J, Pan N (2005) J Mater Chem 15(5):548Google Scholar
  77. 77.
    Sun J, Gao L, Li W (2002) Chem Mater 14(12):5169Google Scholar
  78. 78.
    Sun J, Gao L, Jin XH (2005) Ceram Int 31(6):893Google Scholar
  79. 79.
    Sun J, Gao L (2003) Carbon 41(5):1063Google Scholar
  80. 80.
    Hwang GL, Hwang KC (2001) J Mater Chem 11(6):1722Google Scholar
  81. 81.
    Ning JW, Zhang JJ, Pan YB, Guo JK (2004) Ceram Int 30(1):63Google Scholar
  82. 82.
    Fan JP, Zhao DQ, Wu MS, Xu ZN, Song J (2006) J Am Ceram Soc 89(2):750Google Scholar
  83. 83.
    Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Nano Lett 3(10):1379Google Scholar
  84. 84.
    Sun J, Iwasa M, Gao L, Zhang QH (2004) Carbon 42(4):895Google Scholar
  85. 85.
    Fan JP, Zhao DQ, Xu ZN, Wu MS (2005) Sci China Ser E-Eng Mater Sci 48(6):622Google Scholar
  86. 86.
    Fan JP, Zhuang DM, Zhao DQ, Zhang G, Wu MS, Wei F, Fan ZJ (2006) Appl Phys Lett 89(12):3Google Scholar
  87. 87.
    Estili M, Kawasaki A (2008) Scripta Mater 58(10):906Google Scholar
  88. 88.
    Balani K, Agarwal A (2008) Nanotechnology 19:165701Google Scholar
  89. 89.
    Inam F, Yan H, Reece MJ, Peijs T (2008) Nanotechnology 19:195710Google Scholar
  90. 90.
    Yamamoto G, Omori M, Hashida T, Kimura H (2008) Nanotechnology 19:315708Google Scholar
  91. 91.
    Yamamoto G, Omori M, Hashida T (2008) Water Dynamics 987:83Google Scholar
  92. 92.
    Guo SQ, Sivakumar R, Kagawa Y (2007) Adv Eng Mater 9(1–2):84Google Scholar
  93. 93.
    Guo SQ, Sivakumar R, Kitazawa H, Kagawa Y (2007) J Am Ceram Soc 90(5):1667Google Scholar
  94. 94.
    Sivakumar R, Guo SQ, Nishimura T, Kagawa Y (2007) Scripta Mater 56(4):265Google Scholar
  95. 95.
    Seeger T, Kohler T, Frauenheim T, Grobert N, Ruhle M, Terrones M, Seifert G (2002) Chem Commun 7(1):34Google Scholar
  96. 96.
    Grobert N, Seeger T, Seifert G, Ruhle M (2003) J Ceram Process Res 4(1):1Google Scholar
  97. 97.
    Seeger T, de la Fuente G, Maser WK, Benito AM, Callejas MA, Martinez MT (2003) Nanotechnology 14(2):184Google Scholar
  98. 98.
    DiMaio J, Rhyne S, Ballato J, Czerw R, Xu J, Webster S, Carroll DL, Fu K, Sun YP (2001) Inorg Opt Mater III 4452:48Google Scholar
  99. 99.
    Thomas BC, Shaffer MSP, Boccaccini AR (2008) Composites Part A, submittedGoogle Scholar
  100. 100.
    de Andrade MJ, Lima MD, Stein L, Bergmann CP, Roth S (2007) Physica Stat Sol B-Basic Solid State Phys 244:4218Google Scholar
  101. 101.
    Zhang YJ, Shen YF, Han DX, Wang ZJ, Song JX, Niu L (2006) J Mater Chem 16(47):4592Google Scholar
  102. 102.
    Berguiga L, Bellessa J, Vocanson F, Bernstein E, Plenet JC (2006) Opt Mater 28(3):167Google Scholar
  103. 103.
    Zheng C, Feng M, Zhen X, Huang J, Zhan HB (2008) J Non-Cryst Solids 354(12–13):1327Google Scholar
  104. 104.
    de Andrede MJ, Lima MD, Bergmann CP, Ramminger GD, Balzaretti NM, Costa TMH, Gallas MR (2008) Nanotechnology 19:265607Google Scholar
  105. 105.
    Hernadi K, Ljubovic E, Seo JW, Forro L (2003) Acta Mater 51(5):1447Google Scholar
  106. 106.
    Boccaccini AR, Zhitomirsky I (2002) Curr Opinion Solid State Mater Sci 6(3):251Google Scholar
  107. 107.
    Corni I, Ryan MP, Boccaccini AR (2008) J Eur Ceram Soc 28(7):1353Google Scholar
  108. 108.
    Boccaccini AR, Cho J, Roether JA, Thomas BJC, Minay EJ, Shaffer MSP (2006) Carbon 44(15):3149Google Scholar
  109. 109.
    Chicatun F, Cho J, Schaab S, Brusatin G, Colombo P, Roether JA, Boccaccini AR (2007) Adv Appl Ceram 106(4):186Google Scholar
  110. 110.
    Cho J, Schaab S, Roether JA, Boccaccini AR (2008) J Nanopart Res 10:99Google Scholar
  111. 111.
    Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004) Nano Lett 4(11):2233Google Scholar
  112. 112.
    Zhao LP, Gao L (2004) Carbon 42(2):423Google Scholar
  113. 113.
    Aryal S, Bahadur KCR, Dharmaraj N, Kim KW, Kim HY (2006) Scripta Mater 54(2):131Google Scholar
  114. 114.
    Singh I, Kaya C, Shaffer MSP, Thomas BC, Boccaccini AR (2006) J Mater Sci 41(24):8144. doi: Google Scholar
  115. 115.
    Cho J, Cannio M, Boccaccini AR (2009) Int J Mater Product Technol (in press)Google Scholar
  116. 116.
    Mahajan SV, Hasan SA, Cho J, Shaffer MSP, Boccaccini AR, Dickerson JH (2008) Nanotechnology 19:195301Google Scholar
  117. 117.
    Dobedoe RS, West GD, Lewis MH (2005) Adv Appl Ceram 104(3):110Google Scholar
  118. 118.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64(9):533Google Scholar
  119. 119.
    Wang XT, Padture NP, Tanaka H (2004) Nat Mater 3(8):539Google Scholar
  120. 120.
    Sheldon BW, Curtin WA (2004) Nat Mater 3(8):505Google Scholar
  121. 121.
    Quinn GD, Bradt RC (2007) J Am Ceram Soc 90(3):673Google Scholar
  122. 122.
    Jiang DT, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Scripta Mater 56(11):959Google Scholar
  123. 123.
    Padture NP, Curtin WA (2008) Scripta Mater 58(11):989Google Scholar
  124. 124.
    Jiang D, Mukherjee AK (2008) Scripta Mater 58(11):991Google Scholar
  125. 125.
    Zhu YF, Shi L, Zhang C, Yang XZ, Liang J (2007) Appl Phys A-Mater Sci Process 89(3):761Google Scholar
  126. 126.
    Wei T, Fan ZJ, Luo GH, Wei F (2008) Mater Lett 62(4–5):641Google Scholar
  127. 127.
    Ahmad K, Pan W (2008) Compos Sci Technol 68(6):1321Google Scholar
  128. 128.
    Katsuda Y, Gerstel P, Narayanan J, Bill J, Aldinger F (2006) J Eur Ceram Soc 26(15):3399Google Scholar
  129. 129.
    Ye F, Liu LM, Wang YJ, Zhou Y, Peng B, Meng QC (2006) Scripta Mater 55(10):911Google Scholar
  130. 130.
    Balani K, Chen Y, Harlinkar SP, Dahotre NB, Agarwal A (2007) Acta Biomater 3(6):944Google Scholar
  131. 131.
    Chen Y, Zhang TH, Gan CH, Yu G (2007) Carbon 45(5):998Google Scholar
  132. 132.
    Zapata-Solvas E, Poyato R, Gomez-Garcia D, Dominguez-Rodriguez A, Radmilovic V, Padture NP (2008) Appl Phys Lett 92:111912Google Scholar
  133. 133.
    Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, CambridgeGoogle Scholar
  134. 134.
    Klug T (1994) J Mater Sci 29(15):4013. doi: Google Scholar
  135. 135.
    Chung DL (2003) Composite materials: functional materials for modern technologies. Springer, New YorkGoogle Scholar
  136. 136.
    Shi SL, Liang J (2007) J Appl Phys 101(2):023708Google Scholar
  137. 137.
    Shi SL, Liang J (2006) J Am Ceram Soc 89(11):3533Google Scholar
  138. 138.
    Tatami J, Katashima T, Komeya K, Meguro T, Wakihara T (2005) J Am Ceram Soc 88(10):2889Google Scholar
  139. 139.
    Xiang CS, Pan Y, Guo JK (2007) Ceram Int 33(7):1293Google Scholar
  140. 140.
    Rahatekar SS, Hamm M, Shaffer MSP, Elliott JA (2005) J Chem Phys 123(13):134702Google Scholar
  141. 141.
    Ning JW, Zhang JJ, Pan YB, Guo JK (2003) J Mater Sci Lett 22(14):1019Google Scholar
  142. 142.
    Nan CW, Liu G, Lin YH, Li M (2004) Appl Phys Lett 85(16):3549Google Scholar
  143. 143.
    Nan CW, Shi Z, Lin Y (2003) Chem Phys Lett 375(5–6):666Google Scholar
  144. 144.
    Liu LQ, Zhang SA, Hu TJ, Guo ZX, Ye C, Dai LM, Zhu DB (2002) Chem Phys Lett 359(3–4):191Google Scholar
  145. 145.
    Jin ZX, Sun X, Xu GQ, Goh SH, Ji W (2000) Chem Phys Lett 318(6):505Google Scholar
  146. 146.
    Yim JH, Kim JT, Lee S, Rotermund F, Koh KH (2007) Nonlinear optical properties of SWCNTs incorporated silica composites. 2007 2nd Ieee international conference on nano/micro engineered and molecular systems, vols 1–3, pp 606–610Google Scholar
  147. 147.
    Zhan HB, Zheng C, Chen WZ, Wang MQ (2005) Chem Phys Lett 411(4–6):373Google Scholar
  148. 148.
    Zhan HB, Chen WZ, Wang MQ, Zhengchan, Zou CL (2003) Chem Phys Lett 382(3–4):313Google Scholar
  149. 149.
    Wang F, Rozhin AG, Sun Z, Scardaci V, Penty RV, White IH, Ferrari AC (2008) Int J Mater Form 1(2):107Google Scholar
  150. 150.
    Scardaci V, Rozhin AG, Hennrich F, Milne WI, Ferrari AC (2007) Physica E-Low-Dimen Syst Nanostruct 37(1–2):115Google Scholar
  151. 151.
    Mo CB, Cha SI, Kim KT, Lee KH, Hong SH (2005) Mater Sci Eng A Struct Mater 395(1–2):124Google Scholar
  152. 152.
    Balani K, Zhang T, Karakoti A, Li WZ, Seal S, Agarwal A (2008) Acta Mater 56(3):571Google Scholar
  153. 153.
    Thostenson ET, Karandikar PG, Chou TW (2005) J Phys D-Appl Phys 38(21):3962Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Department of ChemistryImperial College LondonLondonUK

Personalised recommendations