Journal of Materials Science

, Volume 44, Issue 7, pp 1780–1786 | Cite as

Magnetic entropy change in the monovalent doping La0.7Ba0.2M0.1MnO3 (M = Na, Ag, K) manganites

  • W. Cheikh-Rouhou Koubaa
  • M. Koubaa
  • Abdelwaheb CheikhrouhouEmail author


Structural, magnetic, and magnetocaloric properties of monovalent doped La0.7Ba0.2M0.1MnO3 (M = Na, Ag, K) powder samples, synthesized using the solid state reaction at high temperature, have been experimentally investigated. The Rietveld refinement of the X-ray powder diffraction shows that all our synthesized samples are single phase and crystallize in the distorted rhombohedral system with \( R\overline{3} c \) space group. Lattice parameters and the unit cell volume increases with increasing average A-site ionic radius 〈rA〉. The Mn–O–Mn bond angle decreases with increasing 〈rA〉, ranging from 168.32° (M = Na) to 165.91° (M = K). All our studied samples undergo a paramagnetic–ferromagnetic transition. The Curie temperature TC, shifts slightly to a lower temperature with increasing 〈rA〉, which is consistent with large cationic disorder. Magnetic entropy change, \( \left| {\Updelta S_{\text{M}} } \right| \), deduced from isothermal magnetization curves, reaches 3.04, 3.14, and 3.01 J/kg K for M = Na, Ag, and K, respectively, in a magnetic applied field change of 5T. Large relative cooling power (RCP) value of 337.9 J/kg is obtained for La0.7Ba0.2K0.1MnO3 sample, at a field change of 5T. This relatively large value associated to a Curie temperature of 311.5 K makes the present compound a promising candidate for the magnetic refrigerators around room temperature.


Manganite Magnetic Applied Field Magnetic Entropy Change Magnetic Refrigeration Magnetic Field Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been supported by the Tunisian Ministry of Higher Education, Scientific Research and Technology.


  1. 1.
    Guo ZB, Zhang JR, Huang H, Ding WP, Du YW (1997) Appl Phys Lett 70:904CrossRefGoogle Scholar
  2. 2.
    Guo ZB, Du YW, Zhu JS, Huang H, Ding WP, Feng D (1997) Phys Rev Lett 78:1142CrossRefGoogle Scholar
  3. 3.
    Phan MH, Phan TL, Yu SC, Tho ND, Chau N (2004) Phys Status Solid B 241:1744CrossRefGoogle Scholar
  4. 4.
    Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Rep Prog Phys 68:1479CrossRefGoogle Scholar
  5. 5.
    Werbung E (1881) Ann Phys Chem 13:141Google Scholar
  6. 6.
    Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner KA (1998) Phys Rev B 57:3478CrossRefGoogle Scholar
  7. 7.
    Phan MH, Yu SC, Hur NH (2005) Appl Phys Lett 86:072504CrossRefGoogle Scholar
  8. 8.
    Ju HL, Nam YS, Lee JE, Shin HS (2000) J Magn Magn Mater 219:1CrossRefGoogle Scholar
  9. 9.
    Zener C (1951) Phys Rev 82:403CrossRefGoogle Scholar
  10. 10.
    Millis AJ, Littlewood PB, Shraiman BI (1995) Phys Rev Lett 74:5144CrossRefGoogle Scholar
  11. 11.
    Roder H, Zang J, Bishop AP (1996) Phys Rev Lett 76:1356CrossRefGoogle Scholar
  12. 12.
    Dagotto E, Hotta T, Moreo A (2001) Phys Rep 344:1CrossRefGoogle Scholar
  13. 13.
    Xu Y, Meier M, Das P, Koblischka MR, Hartmann U (2002) Cryst Eng 5:383CrossRefGoogle Scholar
  14. 14.
    Das S, Dey TK (2008) Mater Chem Phys 108:220CrossRefGoogle Scholar
  15. 15.
    Chen W, Nie LY, Zhong W, Shi YJ, Hu JJ, Li AJ, Du YW (2005) J Alloy Compd 395:23CrossRefGoogle Scholar
  16. 16.
    Phan MH, Tian SB, Yu SC, Ulyanov AN (2003) J Magn Magn Mater 256:306CrossRefGoogle Scholar
  17. 17.
    Rietveld HM (1969) J Appl Cryst 2:65CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Carvajal J (1990) A program for rietveld refinement and pattern matching analysis (Satellite meeting on powder diffraction of the XV IUCr congress), p 127Google Scholar
  19. 19.
    Ye SL, Sang WH, Dai JM, Wang KY, Wang SG, Zhang CL, Du JJ, Sun YP, Fang J (2002) J Magn Magn Mater 248:2633CrossRefGoogle Scholar
  20. 20.
    Pal S, Banerjee A, Choudhuri BK (2003) J Phys Chem Solids 64:2063CrossRefGoogle Scholar
  21. 21.
    Shannon RD (1976) Acta Crystallogr A32:751CrossRefGoogle Scholar
  22. 22.
    Pi L, Hervieu M, Maignan A, Martin C, Raveau B (2003) Solid State Commun 126:229CrossRefGoogle Scholar
  23. 23.
    Rodriguez-Martinez LM, Paul Attfield J (1996) Phys Rev B 54:R15622CrossRefGoogle Scholar
  24. 24.
    Rodriguez-Martinez LM, Paul Attfield J (1998) Phys Rev B 58:242CrossRefGoogle Scholar
  25. 25.
    Terai T, Kakeshita T, Fukuda T, Saburi T, Takamoto N, Kindo K, Honda M (1998) Phys Rev B 58:14908CrossRefGoogle Scholar
  26. 26.
    Vanitha PV, Santhosh PN, Singh RS, Rao CNR, Attfield JP (1999) Phys Rev B 59:13539CrossRefGoogle Scholar
  27. 27.
    Rivas-Padilla EP, Lisboa-Filho PN, Ortiz WA (2004) J Solid State Chem 177:1338CrossRefGoogle Scholar
  28. 28.
    Singh NK, Suresh KG, Nigam AK (2003) Solid State Commun 127:373CrossRefGoogle Scholar
  29. 29.
    McMichael RD, Ritter JJ, Shull RD (1993) J Appl Phys 73:6946CrossRefGoogle Scholar
  30. 30.
    Gschneidner KA, Pecharsky VK (2000) Annu Rev Mater Sci 30:387CrossRefGoogle Scholar
  31. 31.
    Phan MH, Yu SC (2007) J Magn Magn Mater 308:325CrossRefGoogle Scholar
  32. 32.
    Szewczyk A, Gutowska M, Dabrowski B, Plackowski T, Danilova NP, Gaidukov YP (2005) Phys Rev B 71:224432CrossRefGoogle Scholar
  33. 33.
    Hasimoto T, Kuzuhara T, Sahashi M, Inomata K, Tomokiyo A, Yayama H (1987) J Appl Phys 62:3873CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • W. Cheikh-Rouhou Koubaa
    • 1
  • M. Koubaa
    • 1
  • Abdelwaheb Cheikhrouhou
    • 1
    • 2
    Email author
  1. 1.Laboratoire de Physique des MatériauxFaculté des Sciences de SfaxSfaxTunisia
  2. 2.Institut NEELCNRSGrenoble Cedex9France

Personalised recommendations