Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1416–1420 | Cite as

Indentation and contact damages on grain boundary controlled silicon carbide ceramics

  • Rae Hyeong Ryu
  • Kee Sung LeeEmail author
  • Young-Wook Kim
Letter

Silicon carbide (SiC) ceramics have been studied with particular interest for engineering applications that require high wear resistance [1, 2, 3, 4]. The high hardness of SiC ceramics is accompanied by wear, erosion, and mechanical fatigue resistance. Considerable resistance in corrosive environments such as plasma-enhanced environments is required for hard SiC ceramics in the semiconductor industry. In these materials, mechanical contact is one of the important considerations in the lifetimes of components [5, 6]. The surfaces of the material can be subjected to contact loads ranging, from single to multiple concentrated loads. Thus, reduced sensitivity against the damages—“flaw tolerance” or “damage tolerance”—is required to prolong the lifetimes of the components in service [7, 8, 9, 10].

While SiC ceramics exhibit excellent wear resistance, the critical drawback is low reliability due to the inferior fracture toughness. Therefore, over several decades, studies have demonstrated...

Keywords

Fracture Toughness Y2O3 Liquid Phase Sinter Radial Crack Sc2O3 

Notes

Acknowledgements

This work was supported by the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Commerce, Industry and Energy, Republic of Korea and a grant partly from the Seoul Research and Business Development Program (Grant No. 10583).

References

  1. 1.
    Lange FF (1975) J Mater Sci 10:314. doi: https://doi.org/10.1007/BF00540356 CrossRefGoogle Scholar
  2. 2.
    Mulla MA, Krstic VD (1991) Am Ceram Soc Bull 70:439Google Scholar
  3. 3.
    Ashcroft W (1975) Speical ceramics 6. Academic Press, New YorkGoogle Scholar
  4. 4.
    Kim YW, Chun YS, Nishimura T, Mitomo M, Lee YH (2007) Acta Mater 55:727CrossRefGoogle Scholar
  5. 5.
    Lawn BR (1993) Fracture of brittle solids, chap 8, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. 6.
    Yeo JG, Lee KS, Lawn BR (2000) J Am Ceram Soc 83:1545CrossRefGoogle Scholar
  7. 7.
    Bennison SJ, Padture NP, Runyan JL, Lawn BR (1991) Phil Mag Lett 64:191CrossRefGoogle Scholar
  8. 8.
    Braun LM, Bennison SJ, Lawn BR (1992) Composites and advanced ceramic materials, vol 13. American Ceramic Society, Ohio, p 156Google Scholar
  9. 9.
    Padture NP, Bennison SJ, Chan HM (1993) J Am Ceram Soc 76:2312CrossRefGoogle Scholar
  10. 10.
    Lee SK, Lawn BR (1998) J Am Ceram Soc 81:997CrossRefGoogle Scholar
  11. 11.
    Lawn BR (1998) J Am Ceram Soc 81:1977CrossRefGoogle Scholar
  12. 12.
    Padture NP, Lawn BR (1994) J Am Ceram Soc 77:2518CrossRefGoogle Scholar
  13. 13.
    Kim JY, An HG, Kim YW, Mitomo M (2000) J Mater Sci 35:3693. doi: https://doi.org/10.1023/A:1004894906697 CrossRefGoogle Scholar
  14. 14.
    Sigl LS, Kleebe HJ (1993) J Am Ceram Soc 76:773CrossRefGoogle Scholar
  15. 15.
    Volz E, Roosen A, Wang SC, Wei WCJ (2004) J Mater Sci 39:4095. doi: https://doi.org/10.1023/B:JMSC.0000033388.55299.dc CrossRefGoogle Scholar
  16. 16.
    Kim YW, Lee JH, Kim DY (2007) Mater Sci Forum 558–559:897CrossRefGoogle Scholar
  17. 17.
    Kim Y-W, Lee SH, Nishimura T, Mitomo M (2005) Acta Mater 53:4701CrossRefGoogle Scholar
  18. 18.
    Lawn BR, Padture NP, Cai H, Guiberteau F (1994) Science 263:1114CrossRefGoogle Scholar
  19. 19.
    Guiberteau F, Padture NP, Lawn BR (1994) J Am Ceram Soc 77:1825CrossRefGoogle Scholar
  20. 20.
    Lawn BR, Lee KS, Chai H, Pajares A, Kim DK, Wuttiphan S, Peterson IM, Hu X (2000) Adv Eng Mater 11:745CrossRefGoogle Scholar
  21. 21.
    Lee KS, Jung YG, Peterson IM, Lawn BR, Kim DK, Lee SK (2000) J Am Ceram Soc 83:2255CrossRefGoogle Scholar
  22. 22.
    Cai H, Kalceff MAS, Lawn BR (1993) J Mater Res 9:762CrossRefGoogle Scholar
  23. 23.
    Lee SM, Kim TW, Yim HJ, Kim C, Kim YW, Lee KS (2007) J Ceram Soc Jpn 115:304CrossRefGoogle Scholar
  24. 24.
    Hertz H (1896) Hertz’s miscellaneous papers, chaps 5 and 6. Macmillan, London, UKGoogle Scholar
  25. 25.
    Lawn BR, Wilshaw TR (1975) J Mater Sci 10:1049. doi: https://doi.org/10.1007/BF00823224 CrossRefGoogle Scholar
  26. 26.
    Guahk KH, Han IS, Lee KS (2008) Int J Mod Phys 22:1819CrossRefGoogle Scholar
  27. 27.
    Kim Y-W, Lee YI (2003) Int J Mater Prod Technol 18:199CrossRefGoogle Scholar
  28. 28.
    McColm IJ (1990) Ceramic hardness, 1st edn. Springer Press, USACrossRefGoogle Scholar
  29. 29.
    Lee CS, Lee KS, Lee S, Kim DK (2005) Key Eng Mater 287:421CrossRefGoogle Scholar
  30. 30.
    Kim JH, Lee SW, Lee KS, Kim DK (2004) J Mater Sci 39:7023. doi: https://doi.org/10.1023/B:JMSC.0000047547.09325.3d CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rae Hyeong Ryu
    • 1
  • Kee Sung Lee
    • 1
    Email author
  • Young-Wook Kim
    • 2
  1. 1.School of Mechanical and Automotive EngineeringKookmin UniversitySeoulKorea
  2. 2.Department of Materials Science and EngineeringThe University of SeoulSeoulKorea

Personalised recommendations