Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1241–1244 | Cite as

ITO substrate resistivity effect on the properties of CuInSe2 deposited using two-electrode system

  • Assia BouraiouEmail author
  • M. S. Aida
  • E. Tomasella
  • N. Attaf
Article

Abstract

The purpose of this work is to deposit the CuInSe2 films on the ITO substrate by electrodeposition technique using a simplified two electrodes system and to investigate the effect of ITO sheet resistance on the fundamental properties of the resulting films. The as deposited films were annealed under argon atmosphere at 300 °C during 30 min. The structural, morphological and electrical properties were characterized respectively by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical resistivity measurements. The optical band gap of samples was estimated using the optical absorption technique. After annealing, the XRD spectra show diffraction peaks corresponding to the single-phase chalcopyrite CuInSe2 with (112) as main reflection. The SEM images reveal a homogeneous surface and the estimated grain size was calculated from Scherrer’s Equation with (112) peak lay in the range of 165–272 Å. The band gap, Eg, is a decreasing function with the ITO sheet resistance.

Keywords

Chalcopyrite Sheet Resistance Indium Chloride CuInSe2 Film Selenium Oxide 

References

  1. 1.
    Calixto ME, Sebastian PJ (2000) Sol Energy Mater Sol Cells 63:335CrossRefGoogle Scholar
  2. 2.
    Volobujeva O, Kois J, Traksmaa R, Muska K, Bereznev S, Grossberg M, Mellikov E (2008) Thin Solid Films. doi:  https://doi.org/10.1016/j.tsf.2007.12.024 CrossRefGoogle Scholar
  3. 3.
    Chowles AG, Neethling JH, Vanniekerk H, Engelbrecht JAA, Watters VJ (1995) Renew Energy 6:613CrossRefGoogle Scholar
  4. 4.
    Neumann H, Tomlinson RD (1990) Sol Cells 28:301CrossRefGoogle Scholar
  5. 5.
    Kannan MD, Balasundaraprabhu R, Jayakumar S, Ramanathaswamy P (2004) Sol Energy Mater Sol Cells 81:379CrossRefGoogle Scholar
  6. 6.
    Muller J, Nowoczin J, Schmitt H (2006) Thin Solid Films 496:364CrossRefGoogle Scholar
  7. 7.
    Yamaguchi T, Matsufusa J, Yoshida A (1992) Sol Energy Mater Sol Cells 27:25CrossRefGoogle Scholar
  8. 8.
    Vassilev GP, Docheva P, Nancheva N, Arnaudov B, Dermendjiev I (2003) Mater Chem Phys 82:905CrossRefGoogle Scholar
  9. 9.
    Hama T, Ihara T, Sato H, Fujisawa H, Ohsawa M, Ichikiwa Y, Sakai H (1991) Sol Energy Mater 23:380CrossRefGoogle Scholar
  10. 10.
    Aki AAS, Ashour A, Ramdan AA, Abd El-Hady K (2000) Vacuum 62:75Google Scholar
  11. 11.
    Kohara N, Negami T, Nishitani M, Wada T (1995) Jpn J Appl Phys 34:L1141CrossRefGoogle Scholar
  12. 12.
    Xu JL, Yao XF, Feng JY (2002) Sol Energy Mater Sol Cells 73:203CrossRefGoogle Scholar
  13. 13.
    Moorthy Babua S, Ennaoui A, Lux-Steiner MCh (2005) J Cryst Growth 275:e1241CrossRefGoogle Scholar
  14. 14.
    Kang SH, Kim YK, Choi DS, Sung YE (2006) Electrochim Acta 51:4433CrossRefGoogle Scholar
  15. 15.
    Dharmadasa IM, Burton RP, Simmonds M (2006) Sol Energy Mater Sol Cells 90:2191CrossRefGoogle Scholar
  16. 16.
    Zhang L, Jiang FD, Feng JY (2003) Sol Energy Mater Sol Cells 80:483CrossRefGoogle Scholar
  17. 17.
    Al-Bassam AAI (1999) Physica B 266:192CrossRefGoogle Scholar
  18. 18.
    Dhanam M, Balasundaraprabhu R, Jayakumar S, Gopalakrishnan P, Kannan MD (2002) Phys Stat Sol 191:149CrossRefGoogle Scholar
  19. 19.
    Adurodijia FO, Kim SF, Kim SD, Song JS, Yoon KH, Ahn BT (1998) Sol Energy Mater Sol Cells 55:225CrossRefGoogle Scholar
  20. 20.
    Calixto ME, Sebastian PJ, Bhattacharya RN, Noufi R (1999) Sol Energy Mater Sol Cells 59:75CrossRefGoogle Scholar
  21. 21.
    Friedfeld R, Raffaelle RP, Mantovani JG (1999) Sol Energy Mater Sol Cells 58:375CrossRefGoogle Scholar
  22. 22.
    Faraday M (1834) Philos Trans R Soc 124:77CrossRefGoogle Scholar
  23. 23.
    Weast RC (ed) (1980) CRC handbook of chemistry and physics. CRC, Boca Raton, FLGoogle Scholar
  24. 24.
    International Center for Diffraction Data, ICDD, PDF2 databaseGoogle Scholar
  25. 25.
    Dhananjay, Nagaraju J, Krupanidhi SB (2006) Mater Sci Eng B 127:12CrossRefGoogle Scholar
  26. 26.
    Meglali O, Bouraiou A, Attaf N (2008) Rev Energy Renouvelables 11:19Google Scholar
  27. 27.
    Kois J, Bereznev S, Raudoja J, Mellikov E, Opik A (2005) Sol Energy Mater Sol Cells 87:657CrossRefGoogle Scholar
  28. 28.
    Huang CJ, Meen TH, Lai MY, Chen WR (2004) Sol Energy Mater Sol Cells 82:553Google Scholar
  29. 29.
    Tembhurkar YD, Hirde JP (1992) Thin Solid Films 215:65CrossRefGoogle Scholar
  30. 30.
    Joiet MC, Antoniadise C, Laude LD (1985) Thin Solid Films 126:143CrossRefGoogle Scholar
  31. 31.
    Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley, Reading, MAGoogle Scholar
  32. 32.
    Scherrer P (1918) Gott Nachr 2:98Google Scholar
  33. 33.
    Machlin ES (2006) Materials science in microelectronics II: the effect of structure on properties in thin films. Elsevier, Amsterdam, p 4Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Assia Bouraiou
    • 1
    Email author
  • M. S. Aida
    • 1
  • E. Tomasella
    • 2
  • N. Attaf
    • 1
  1. 1.Laboratoire des Couches Minces et Interfaces, Département de physiqueUniversité Mentouri-ConstantineConstantineAlgeria
  2. 2.Laboratoire des Matériaux Inorganiques, UMR CNRS 6002Université Clermont-Ferrand (Blaise Pascal)Aubiére CedexFrance

Personalised recommendations