Journal of Materials Science

, Volume 44, Issue 7, pp 1704–1710 | Cite as

Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni–Al–Pt systems

  • B. GleesonEmail author
  • N. Mu
  • S. Hayashi
Interface Science in Thermal Barrier Coatings


The beneficial role played by platinum addition in promoting the formation of a protective Al2O3 scale on representative γ′-Ni3Al+γ-Ni coating compositions during high-temperature oxidation is discussed. This beneficial effect can be primarily ascribed to the fact that Pt is non-reactive, and its addition decreases the chemical activity of aluminum in γ′. Related to the latter, Pt partitions almost solely to the Ni sites in the ordered L12 crystal structure of γ′, which has the effect of amplifying the increase in the Al: Ni atom fraction on a given crystallographic plane containing both Al and Ni. Such an effective Al enrichment at the γ′surface kinetically favors the formation of Al2O3 relative to NiO. A further contributing factor is that the Pt-containing γ′-based alloys show subsurface Pt enrichment during the very early stages of oxidation. This enrichment reduces Ni availability and can increase the Al supply to the evolving scale, thus kinetically favoring Al2O3 formation. This observed benefit of Pt addition promoting exclusive Al2O3-scale growth is inferred to be a special form of the third-element effect.


Bond Coat Thermally Grow Oxide NiAl2O4 Partially Stabilize Zirconia Al2O3 Scale 



The financial support for this research from the Office of Naval Research is gratefully acknowledged. The authors particularly thank Dr. David Shifler, Program Manager, for providing the guidance and commitment.


  1. 1.
    Smialek JL (2001) Surf Interface Anal 31:582CrossRefGoogle Scholar
  2. 2.
    Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Pollock TM et al (2000) International Symposium on Superalloys 2000, TMS, Champion, PennsylvaniaGoogle Scholar
  4. 4.
    Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505CrossRefGoogle Scholar
  5. 5.
    Levi CG (2004) Curr Opin Solid State and Mater Sci 8:77CrossRefGoogle Scholar
  6. 6.
    Gleeson B (2006) J Prop and Power 22:375CrossRefGoogle Scholar
  7. 7.
    Meier SM, Gupta DK (1994) Trans ASME 116:250CrossRefGoogle Scholar
  8. 8.
    Shillington EAG, Clarke DR (1999) Acta Mater 47:1297CrossRefGoogle Scholar
  9. 9.
    Barber B, Jordon E, Gell M, Geary A (1999) J Therm Spray Technol 8:79CrossRefGoogle Scholar
  10. 10.
    Karlsson AM, Hutchinson JW, Evans AG (2003) Mater Sci Eng A 351:244CrossRefGoogle Scholar
  11. 11.
    Nicholls JR (2003) MRS Bulletin 28:659CrossRefGoogle Scholar
  12. 12.
    Miracle DB (1993) Acta Metall Mater 41:649CrossRefGoogle Scholar
  13. 13.
    Doychak J (1984) In: Bailey GW (ed) Proceedings of the 42nd annual meeting of the electron microscopy society of AmericaGoogle Scholar
  14. 14.
    Grabke HJ, Brumm MW, Wagemann B (1996) Mater Corros 47:675CrossRefGoogle Scholar
  15. 15.
    Lehnert G, Meinhardt H (1972) Electrodepos Surf Treat 1:71CrossRefGoogle Scholar
  16. 16.
    Felten EJ (1976) Oxid Met 10:23CrossRefGoogle Scholar
  17. 17.
    Chen JH, Little JA (1997) Surf Coat Technol 92:69CrossRefGoogle Scholar
  18. 18.
    Cadoret Y, Bacos MP, Josso P, Maurice V, Marcus P, Zanna S (2004) Mater Sci Forum 461–464:247CrossRefGoogle Scholar
  19. 19.
    Hou PY, McCarty KF (2006) Scr Mater 54:937CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Haynes JA, Lee WY, Wright IG, Pint BA, Cooley KM, Liaw PK (2001) Metall Mater Trans A 32A:1727CrossRefGoogle Scholar
  21. 21.
    Grabke HJ, Wiemer D, Viefhaus H (1991) Appl Surf Sci 47:243CrossRefGoogle Scholar
  22. 22.
    Pint BA (1997) Oxid Met 48:303CrossRefGoogle Scholar
  23. 23.
    Pint BA, Wright IG, Lee WY, Zhang Y, Prüßner K, Alexander KB (1998) Mater Sci Eng A 245:201CrossRefGoogle Scholar
  24. 24.
    Clarke DR, Levi CG (2003) Annu Rev Mater Res 33:383CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Haynes JA, Pint BA, Wright IG, Lee WY (2003) Surf Coat Technol 163–164:19CrossRefGoogle Scholar
  26. 26.
    Waltson WS, Schaeffer JC, Murphy WH (1996) In: Kissinger RD et al (eds) International Symposium on Superalloys 1996, TMS, Champion, PennsylvaniaGoogle Scholar
  27. 27.
    Gleeson B, Wang W, Hayashi S, Sordelet D (2004) Mater Sci Forum 461–464:213CrossRefGoogle Scholar
  28. 28.
    Gleeson B et al (2007) US Patent 7,273,662Google Scholar
  29. 29.
    Wood GC, Stott FH (1983) High Temp Corros NACE6 227Google Scholar
  30. 30.
    Stott FH (1997) Mater Sci Forum 251–254:19CrossRefGoogle Scholar
  31. 31.
    Felten EJ, Pettit FS (1976) Oxid Met 10:189CrossRefGoogle Scholar
  32. 32.
    Reddy KPR, Smialek JL, Cooper AR (1982) Oxid Met 17:429CrossRefGoogle Scholar
  33. 33.
    Doychak JK, Mitchell TE, Smialek JL (1985) Mater Res Soc Symp Proc 39:475CrossRefGoogle Scholar
  34. 34.
    Prescott R, Graham MJ (1992) Oxid Met 38:233CrossRefGoogle Scholar
  35. 35.
    Lipkin DM, Clarke DR, Hollatz M, Bobeth M, Pompe W (1997) Corros Sci 39:231CrossRefGoogle Scholar
  36. 36.
    Hou PY, Paulikas AP, Veal BW (2004) Mater Sci Forum 461–464:671CrossRefGoogle Scholar
  37. 37.
    Doychak J (1994) In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds, Chapter 43, vol 1. Wiley, New YorkGoogle Scholar
  38. 38.
    Pettit FS (1967) Trans Metall Soc AIME 239:1296Google Scholar
  39. 39.
    Brady MP, Gleeson B, Wright IG (2000) JOM 52:16CrossRefGoogle Scholar
  40. 40.
    Gesmundo F, Niu Y (1998) Oxid Met 50:1CrossRefGoogle Scholar
  41. 41.
    Whittle DP, Wood GC, Evans DJ, Scully DB (1967) Acta Metall 15:1747CrossRefGoogle Scholar
  42. 42.
    Clemens D, Quadakkers WJ, Singheiser L (1998) In: Hou PY, McNallan MJ, Oltra R, Opila EJ, Shores D (eds) High temperature corrosion and materials chemistry, vol 98–9. The Electrochemical Society, Pennington, NJ, p 134Google Scholar
  43. 43.
    Wright IG (1972) Metals and Ceramics Information Center Report MCIC–72-07Google Scholar
  44. 44.
    Wallwork GR, Hed AZ (1971) Oxid Met 3:171CrossRefGoogle Scholar
  45. 45.
    Wagner C (1965) Corros Sci 5:751CrossRefGoogle Scholar
  46. 46.
    Stott FH, Wood GC, Stringer J (1995) Oxid Met 44:113CrossRefGoogle Scholar
  47. 47.
    Sauer JP, Rapp RA, Hirth JP (1982) Oxid Met 18:285CrossRefGoogle Scholar
  48. 48.
    Jackson PRS, Wallwork GR (1984) Oxid Met 21:135CrossRefGoogle Scholar
  49. 49.
    Guan SW, Smeltzer WW (1994) Oxid Met 42:375Google Scholar
  50. 50.
    Hagel WC (1965) Corros 21:316CrossRefGoogle Scholar
  51. 51.
    Coupland DR, Hall CW, McGill IR (1982) Platin Met Rev 26:186Google Scholar
  52. 52.
    Coupland DR, McGill IR, Corti CW, Selman GL (1980) Proc Environ Degrad High Temp Mater 2:26Google Scholar
  53. 53.
    Tatlock GJ, Hurd TJ (1984) Oxid Met 22:201CrossRefGoogle Scholar
  54. 54.
    Tatlock GJ, Hurd TJ (1990) Werkst Korros 41:710CrossRefGoogle Scholar
  55. 55.
    Tatlock GJ, Hurd TJ (1987) Platin Met Rev 31:26Google Scholar
  56. 56.
    Felten EJ (1976) Oxid Met 10:23CrossRefGoogle Scholar
  57. 57.
    Tatlock GJ, Hurd TJ, Punni JS (1987) Platin Met Rev 31:26Google Scholar
  58. 58.
    Jiang C, Sordelet DJ, Gleeson B (2006) Acta Mater 54:1147CrossRefGoogle Scholar
  59. 59.
    Hayashi S, Wang W, Sordelet DJ, Gleeson B (2005) Metall Mater Trans A 36A:1769CrossRefGoogle Scholar
  60. 60.
    Copland E (2007) J Phase Equilib Diffus 28:38CrossRefGoogle Scholar
  61. 61.
    Wilkinson D (2000) Mass transport in solids and fluids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. 62.
    Hayashi S, Narita T, Gleeson B (2006) Mater Sci Forum 522–523:229CrossRefGoogle Scholar
  63. 63.
    Hayashi S, Ford SI, Young DJ, Sordelet DJ, Besser MF, Gleeson B (2005) Acta Mater 53:3319CrossRefGoogle Scholar
  64. 64.
    Qin F, Jiang C, Anderegg JW, Jenks CJ, Gleeson B, Sordelet DJ, Thiel PA (2007) Surf Sci 601:376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceThe University of PittsburghPittsburghUSA
  2. 2.Division of Materials Science and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations