Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1159–1171 | Cite as

Carbothermal reduction of metal-oxide powders by synthetic pitch to carbide and nitride ceramics

  • B. M. Eick
  • J. P. YoungbloodEmail author
Article

Abstract

The carbothermal reduction potential of mesophase synthetic pitch was investigated. Powders of cobalt oxide, iron oxide, zirconium oxide, manganese oxide, silicon oxide, vanadium oxide, tantalum oxide, tungsten oxide, chromium oxide, and titanium oxide were mixed with pitch and pyrolyzed at a variety of temperatures up to 1500 °C in nitrogen, 5% hydrogen balance argon, and anhydrous ammonia. Pitch was found superior to graphite (and both were superior to charcoal) in carbothermal reactivity by forming carbides and nitrides more completely and at lower temperatures and, in some instances, where no conversion was observed for graphite. It is hypothesized that wetting of the liquid pitch at high temperatures before graphitization leads to better surface contact, and thus, increased kinetics of the carbothermal reduction.

Keywords

Carbide Manganese Oxide Cobalt Oxide Tungsten Oxide Titanium Nitride 

Notes

Acknowledgements

This work was partially supported by the Air Force Office of Scientific Research Grant # F49620-04-NA-153 and the National Science Foundation through the Graduate Assistantship in Areas of National Need.

References

  1. 1.
    Eom JH, Kim YW, Song IH, Kim HD (2007) Mater Sci Eng A 464:129CrossRefGoogle Scholar
  2. 2.
    Xiang DP, Liu Y, Zhao ZW, Gao SJ, Tu MJ (2007) J Mater Sci 42:4630. doi: https://doi.org/10.1007/s10853-006-0468-y CrossRefGoogle Scholar
  3. 3.
    Sajgalik P, Hnatko M, Lences Z, Dusza J, Kasiarova M, Kovalcik J, Sida V (2006) Science of engineering ceramics III. TransTech Publishing, Switzerland, p 185Google Scholar
  4. 4.
    Hnatko M, Galusek D, Sajgalik P (2004) J Eur Ceram Soc 24:189CrossRefGoogle Scholar
  5. 5.
    Hnatko M, Sajgalik P, Lences Z, Monteverde F, Dusza J, Warbichler P, Hofer F (2002) Euro ceramics VII, Pt 1–3. TransTech Publishing, Switzerland, p 1061Google Scholar
  6. 6.
    Yu SS, Fu NX, Gao F, Sui ZT (2007) J Mater Sci Technol 23:43Google Scholar
  7. 7.
    Gruner W, Stolle S, Wetzig K (2000) Int J Refract Metals Hard Mater 18:137CrossRefGoogle Scholar
  8. 8.
    Lee GG, Ha GH (2006) Mater Trans 47:3007CrossRefGoogle Scholar
  9. 9.
    Woo YC, Kang HJ, Kim DJ (2007) J Eur Ceram Soc 27:719CrossRefGoogle Scholar
  10. 10.
    Lee GG, Kim BK (2003) Mater Trans 44:2145CrossRefGoogle Scholar
  11. 11.
    Lim YS, Park JW, Kim MS, Kim J (2006) Appl Surf Sci 253:1601CrossRefGoogle Scholar
  12. 12.
    Berger LM, Gruner W, Langholf E, Stolle S (1999) Int J Refract Metals Hard Mater 17:235CrossRefGoogle Scholar
  13. 13.
    Luo M, Gao JQ, Zhang X, Hou GY, Yang JF, Ouyang D, Wang HJ, Jin ZH (2007) J Mater Sci 42:3761. doi: https://doi.org/10.1007/s10853-006-0425-9 CrossRefGoogle Scholar
  14. 14.
    Sacks MD, Wang C, Yang Z, Jain A (2004) J Mater Sci 39:6057. doi: https://doi.org/10.1023/B:JMSC.0000041702.76858.a7 CrossRefGoogle Scholar
  15. 15.
    Vandijen FK, Metselaar R, Siskens CAM (1985) J Am Ceram Soc 68:16CrossRefGoogle Scholar
  16. 16.
    Li J, Zhang Y, Zhong X, Yang K, Meng J, Cao X (2007) Nanotechnol 18Google Scholar
  17. 17.
    Wang W, Jin Z, Xu T, Yang G, Qiao G (2007) J Mater Sci 42:6439. doi: https://doi.org/10.1007/s10853-006-1202-5 CrossRefGoogle Scholar
  18. 18.
    Matovic B, Saponjic A, Devecerski A, Miljkavic (2008) J Mater Sci 43:5331. doi: https://doi.org/10.1007/s10853-006-0780-6 CrossRefGoogle Scholar
  19. 19.
    Vaidhyanathan B, Rao KJ (1997) Chem Mater 9:1196CrossRefGoogle Scholar
  20. 20.
    Chowdhury SA, Maiti HS, Biswas S (2006) J Mater Sci 41:4699. doi: https://doi.org/10.1007/s10853-006-0039-2 CrossRefGoogle Scholar
  21. 21.
    Krishnarao RV, Subrahmanyam J (2004) J Mater Sci 39:6263. doi: https://doi.org/10.1023/B:JMSC.0000043596.56929.11 CrossRefGoogle Scholar
  22. 22.
    Krishnarao RV, Subrahmanyam J (2002) J Mater Sci 37:1693. doi: https://doi.org/10.1023/A:1014981722160 CrossRefGoogle Scholar
  23. 23.
    Alcala MD, Criado JM, Gotor FJ, Real C (2006) J Mater Sci 41:1933. doi: https://doi.org/10.1007/s10853-006-4493-7 CrossRefGoogle Scholar
  24. 24.
    Korai Y, Ishida S, Yoon SH, Wang YG (1996) Carbon 34:1569CrossRefGoogle Scholar
  25. 25.
    Chang YC, Sohn HJ, Ku CH, Wang YG, Korai Y, Mochida I (1999) Carbon 37:1285CrossRefGoogle Scholar
  26. 26.
    Kundu S, Ogale AA (2006) Carbon 44:2224CrossRefGoogle Scholar
  27. 27.
    Upadhyayula S, Saddawi S, Strieder W (2007) Ind Eng Chem Res 46:2907CrossRefGoogle Scholar
  28. 28.
    Wang YG, Chang YC, Ishida S, Korai Y, Mochida I (1999) Carbon 37:969CrossRefGoogle Scholar
  29. 29.
    Dai WB, Lin W, Yamaguchi A, Ommyoji J, Yu JK, Zou ZS (2007) J Ceram Soc Jpn 115:42CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations