Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO2@Ag nanoconjugates
- 491 Downloads
- 34 Citations
Abstract
A simple technique is first developed to functionalize the durable-press all-cotton fabrics by grafting silver anchored TiO2 (P25) nanoconjugates through enediol ligand-metal oxide bonding and resin dehydration. The functionalization is incorporated into a conventional pad-dry-cure process. The treatment ensures the nanoconjugates are covalently bonded to the substrate fabric materials (cotton cellulose). We tested the bactericidal activity of these surface-modified fabric samples after repeated laundries, using the waterborne Escherichia coli bacteria. Strong inhibition results were observed on the TiO2@Ag treated samples than using bare TiO2 alone. After 60 min of sunlight irradiation, the overall bactericidal efficiency reached 96% after 7.5 h culturing. After 60 min of artificial solar light irradiation, the overall bactericidal efficiency reached 99%. Our observations suggest that the enediol linkage can be an effective candidate to graft functional metal oxide nanoconjugates onto a variety of fabric surfaces via a conventional pad-dry-cure process.
Keywords
TiO2 Silver Nanoparticles Cotton Fabric Fabric Sample TiO2 NanoparticlesNotes
Acknowledgement
This research was supported by ITF, grant no. UIM109 (The Hong Kong University of Science and Technology).
References
- 1.Mahltig B, Haufe H, Bottcher H (2005) J Mater Chem 15:4385CrossRefGoogle Scholar
- 2.Qi KH, Daoud WA, Xin JH, Mak CL, Tang WZ, Cheung WP (2006) J Mater Chem 16:4567CrossRefGoogle Scholar
- 3.Qi KH, Chen XQ, Liu YY, Xin JH, Mak CL, Daoud WA (2007) J Mater Chem 17:3504CrossRefGoogle Scholar
- 4.Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL (2006) J Appl Polym Sci 101:2938CrossRefGoogle Scholar
- 5.Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Proc Natl Acad Sci USA 98:5981CrossRefGoogle Scholar
- 6.Onar N, Sariisik M (2004) J Appl Polym Sci 93:2903CrossRefGoogle Scholar
- 7.Oktem T (2003) Color Technol 119:241CrossRefGoogle Scholar
- 8.Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) Chem Commun 2959Google Scholar
- 9.Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2000) J Biomed Mater Res 53:621CrossRefGoogle Scholar
- 10.Kittinaovarat S, Kantuptim P, Singhaboonponp T (2006) J Appl Polym Sci 100:1372CrossRefGoogle Scholar
- 11.Hong KH, Sun G (2007) J Appl Polym Sci 106:2661CrossRefGoogle Scholar
- 12.Gao Y, Cranston R (2008) Text Res J 78:60CrossRefGoogle Scholar
- 13.El-Tahlawy KF, El-Bendary MA, Elhendawy AG, Hudson SM (2005) Carbohyd Polym 60:421CrossRefGoogle Scholar
- 14.Cen L, Neoh KG, Kang ET (2004) J Biomed Mater Res A 71A:70CrossRefGoogle Scholar
- 15.Fir M, Vince J, Vuk AS, Vilcnik A, Jovanovski V, Mali G, Orel B, Simoncic B (2007) Acta Chim Slov 54:144Google Scholar
- 16.Wang CC, Chen CC (2005) Appl Catal A Gen 293:171CrossRefGoogle Scholar
- 17.Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Environ Sci Technol 32:726CrossRefGoogle Scholar
- 18.Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Appl Environ Microbiol 65:4094Google Scholar
- 19.Amezaga-Madrid P, Silveyra-Morales R, Cordoba-Fierro L, Nevarez-Moorillon GV, Miki-Yoshida M, Orrantia-Borunda E, Solis FJ (2003) J Photochem Photobiol B 70:45CrossRefGoogle Scholar
- 20.Daoud WA, Xin JH (2004) J Am Ceram Soc 87:953CrossRefGoogle Scholar
- 21.de Oliveira AL, Wolf A, Schuth F (2001) Catal Lett 73:157CrossRefGoogle Scholar
- 22.Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
- 23.Kamat PV (1993) Chem Rev 93:267CrossRefGoogle Scholar
- 24.Rolison DR (2003) Science 299:1698CrossRefGoogle Scholar
- 25.Jakob M, Levanon H, Kamat PV (2003) Nano Lett 3:353CrossRefGoogle Scholar
- 26.Cozzoli PD, Fanizza E, Comparelli R, Curri ML, Agostiano A, Laub D (2004) J Phys Chem B 108:9623CrossRefGoogle Scholar
- 27.Hirakawa T, Kamat PV (2005) J Am Chem Soc 127:3928CrossRefGoogle Scholar
- 28.Yang ZX, Wu RQ, Goodman DW (2000) Phys Rev B 61:14066CrossRefGoogle Scholar
- 29.Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
- 30.Sun B, Vorontsov AV, Smirniotis PG (2003) Langmuir 19:3151CrossRefGoogle Scholar
- 31.Tada H, Teranishi K, Inubushi Y, Ito S (1998) Chem Commun 2345Google Scholar
- 32.Wood A, Giersig M, Mulvaney P (2001) J Phys Chem B 105:8810CrossRefGoogle Scholar
- 33.Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943CrossRefGoogle Scholar
- 34.Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479CrossRefGoogle Scholar
- 35.Zhang LZ, Yu JC, Yip HY, Li Q, Kwong KW, Xu AW, Wong PK (2003) Langmuir 19:10372CrossRefGoogle Scholar
- 36.Rajh T, Chen LX, Lukas K, Liu T, Thurnauer MC, Tiede DM (2002) J Phys Chem B 106:10543CrossRefGoogle Scholar
- 37.Book of ASTM standards (1969) American Society for Testing and Materials, part 25, Philadelphia, p 102Google Scholar
- 38.Book of ASTM standards (1969) American Society for Testing and Materials, part 25, Philadelphia, p 579Google Scholar
- 39.Fan SQ, Li CJ, Li CX, Liu GJ, Yang GJ, Zhang LZ (2006) p 1703Google Scholar
- 40.Claus P, Hofmeister H (1999) J Phys Chem B 103:2766CrossRefGoogle Scholar
- 41.Rajh T, Nedeljkovic JM, Chen LX, Poluektov O, Thurnauer MC (1999) J Phys Chem B 103:3515CrossRefGoogle Scholar
- 42.Yu JC, Tang HY, Yu JG, Chan HC, Zhang LZ, Xie YD, Wang H, Wong SP (2002) J Photochem Photobiol A 153:211CrossRefGoogle Scholar
- 43.Xu CJ, Xu KM, Gu HW, Zheng RK, Liu H, Zhang XX, Guo ZH, Xu B (2004) J Am Chem Soc 126:9938CrossRefGoogle Scholar