Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1580–1587 | Cite as

Machinability, deformation, and cracks behavior of pressureless-sintered Al2O3/h-BN composites: role of weak boundary phases

  • Zhongqi ShiEmail author
  • Jiping Wang
  • Guanjun Qiao
  • Jianfeng Yang
  • Zhihao Jin
Article

Abstract

Al2O3/h–BN machinable composites were cost-effectively fabricated by pressureless sintering method. The machinability, deformation, and cracks behavior of the composites were investigated by drilling, Hertzian indentation, and Vickers indentation test, respectively. Through the observation of the microstructures in different scales by SEM, we analyzed the role of the weak boundary phases (WBP), including h-BN and pores, on the machining mechanism of the composites. The results showed that almost all of the WBP dispersed at the Al2O3 grain boundaries, which strongly elevate the machinability and deformability of the composites. During the drilling or Hertzian indentation test, a large number of microcracks formed firstly along the WBP; then these microcracks connected with each other causing a removal or macro-deformation of the composites. The Vickers indentation test result indicated that the weak interfaces and grain boundaries of WBP lead to a low microcrack toughness, whereas in macro-scale the crack toughness was improved because of the crack bridging and deflection of WBP.

Keywords

Slip Plane Weak Interface Good Machinability Contact Damage Applied Compressive Stress 

Notes

Acknowledgement

This study was funded by National Natural Science Foundation of China (No. 50772086).

References

  1. 1.
    Grossman DG (1972) J Am Ceram Soc 55:446. doi: https://doi.org/10.1111/j.1151-2916.1972.tb11337.x CrossRefGoogle Scholar
  2. 2.
    Kusunose T, Sekino T, Choa YH, Niihara K (2002) J Am Ceram Soc 85:2678. doi: https://doi.org/10.1111/j.1151-2916.2002.tb00514.x CrossRefGoogle Scholar
  3. 3.
    Li YL, Qiao GJ, Jin ZH (2002) Mater Res Bull 37:1401. doi: https://doi.org/10.1016/S0025-5408(02)00786-9 CrossRefGoogle Scholar
  4. 4.
    Li YL, Zhang JX, Qiao GJ, Jin ZH (2005) Mater Sci Eng A 397:35. doi: https://doi.org/10.1016/j.msea.2005.01.038 CrossRefGoogle Scholar
  5. 5.
    Wang XD, Qiao GJ, Jin ZH (2004) J Am Ceram Soc 87:565. doi: https://doi.org/10.1111/j.1551-2916.2004.00565.x CrossRefGoogle Scholar
  6. 6.
    Baskaran S, Halloran JW (1993) J Am Ceram Soc 76:2217. doi: https://doi.org/10.1111/j.1151-2916.1993.tb07757.x CrossRefGoogle Scholar
  7. 7.
    Padture NP, Evans CJ, Hockin HKX, Lawn BR (1995) J Am Ceram Soc 78:215. doi: https://doi.org/10.1111/j.1151-2916.1995.tb08386.x CrossRefGoogle Scholar
  8. 8.
    Davis JB, Marshall DB, Housley RM, Morgan PED (1998) J Am Ceram Soc 81:2169. doi: https://doi.org/10.1111/j.1151-2916.1998.tb02602.x CrossRefGoogle Scholar
  9. 9.
    Suganuma K, Sasaki G, Fujita T, Okumura M, Niihara K (1993) J Mater Sci 28:1175. doi: https://doi.org/10.1007/BF01191949 CrossRefGoogle Scholar
  10. 10.
    Kawai C, Yamakawa A (1997) J Am Ceram Soc 80:2705. doi: https://doi.org/10.1111/j.1151-2916.1997.tb03179.x CrossRefGoogle Scholar
  11. 11.
    Barsoum MW, El-Raghy T (1996) J Am Ceram Soc 79:1953. doi: https://doi.org/10.1111/j.1151-2916.1996.tb08018.x CrossRefGoogle Scholar
  12. 12.
    Shi ZQ, Wang JP, Qiao GJ, Jin ZH (2008) Mater Sci Eng A 492:29. doi: https://doi.org/10.1016/j.msea.2008.03.004 CrossRefGoogle Scholar
  13. 13.
    Lawn BR, Padture NP, Cai HD, Guiberteau F (1994) Science 263:1114. doi: https://doi.org/10.1126/science.263.5150.1114 CrossRefGoogle Scholar
  14. 14.
    Kusunose T, Sekino T, Choa YH, Niihara K (2002) J Am Ceram Soc 85:2689. doi: https://doi.org/10.1111/j.1151-2916.2002.tb00515.x CrossRefGoogle Scholar
  15. 15.
    Cai HD, Kalceff MAS, Lawn BR (1994) J Mater Res 9:762. doi: https://doi.org/10.1557/JMR.1994.0762 CrossRefGoogle Scholar
  16. 16.
    Xu HHK, Jahanmir S (1995) J Am Ceram Soc 78:497. doi: https://doi.org/10.1111/j.1151-2916.1995.tb08831.x CrossRefGoogle Scholar
  17. 17.
    Padture NP (1994) J Am Ceram Soc 77:519. doi: https://doi.org/10.1111/j.1151-2916.1994.tb07024.x CrossRefGoogle Scholar
  18. 18.
    Fischer-Cripps AC, Lawn BR (1996) J Am Ceram Soc 79:2609. doi: https://doi.org/10.1111/j.1151-2916.1996.tb09023.x CrossRefGoogle Scholar
  19. 19.
    Latella BA, O’Connor BH, Padture NP, Lawn BR (1997) J Am Ceram Soc 80:1027. doi: https://doi.org/10.1111/j.1151-2916.1997.tb02940.x CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Zhang ZF, He G, Eckert J, Schultz L (2003) Phys Rev Lett 91:045505. doi: https://doi.org/10.1103/PhysRevLett.91.045505 CrossRefGoogle Scholar
  22. 22.
    Yoon YS, Na SW, Lee J, Cho MW, Lee ES, Cho WS (2004) J Am Ceram Soc 87:1374. doi: https://doi.org/10.1111/j.1151-2916.2004.tb07740.x CrossRefGoogle Scholar
  23. 23.
    Cho WS, Cho MW, Lee JH, Munir ZA (2006) Mater Sci Eng A 418:61. doi: https://doi.org/10.1016/j.msea.2005.11.033 CrossRefGoogle Scholar
  24. 24.
    Jiang T, Jin ZH, Yang JF, Qiao GJ (2008) Mater Sci Eng A 494:203. doi: https://doi.org/10.1016/j.msea.2008.04.047 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zhongqi Shi
    • 1
    Email author
  • Jiping Wang
    • 1
  • Guanjun Qiao
    • 1
  • Jianfeng Yang
    • 1
  • Zhihao Jin
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations