Journal of Materials Science

, Volume 44, Issue 7, pp 1858–1867 | Cite as

Preparation, structural characterisation and antibacterial properties of Ga-doped sol–gel phosphate-based glass

  • D. M. PickupEmail author
  • S. P. Valappil
  • R. M. Moss
  • H. L. Twyman
  • P. Guerry
  • M. E. Smith
  • M. Wilson
  • J. C. Knowles
  • R. J. Newport


A sol–gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)0.30(Na2O)0.20−x(Ga2O3)x(P2O5)0.50 where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the 31P MAS NMR data demonstrated that addition of gallium to the sol–gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of –OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control.


Gallium Ga2O3 Phosphate Chain Metaphosphate Composition HEXRD Data 



The authors wish to acknowledge funding from the EPSRC (EP/C000714, EP/C000633 and GR/T21080). We thank STFC for access to the synchrotron and especially Bob Bilsborrow and Mark Roberts of the STFC Daresbury Laboratory for their assistance in the use of stations 16.5 and 9.1, respectively.


  1. 1.
    Norrby SR, Nord CE, Finch R (2005) Lancet Infect Dis 5:115CrossRefGoogle Scholar
  2. 2.
    Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) J Clin Invest 117:877CrossRefGoogle Scholar
  3. 3.
    Olakanmi O, Britigan BE, Schlesinger LS (2000) Infect Immun 68:5619CrossRefGoogle Scholar
  4. 4.
    Yan GH, Wang GJ, Li YC (1991) Acta Pharmacol Sin 12:530Google Scholar
  5. 5.
    Harrington JR, Martens RJ, Cohen ND, Bernstein LR (2006) J Vet Pharmacol Ther 29:121CrossRefGoogle Scholar
  6. 6.
    Valappil SP, Ready D, Abou Neel EA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith ME, Wilson M, Knowles JC (2008) Adv Funct Mater 18:732CrossRefGoogle Scholar
  7. 7.
    Bitar M, Salih V, Mudera V, Knowles JC, Lewis MP (2004) Biomaterials 25:2283CrossRefGoogle Scholar
  8. 8.
    Knowles JC (2003) J Mater Chem 13:2395CrossRefGoogle Scholar
  9. 9.
    Mulligan AM, Wilson M, Knowles JC (2003) J Biomed Mater Res A 67:401CrossRefGoogle Scholar
  10. 10.
    Mulligan AM, Wilson M, Knowles JC (2003) Biomaterials 24:1797CrossRefGoogle Scholar
  11. 11.
    Ahmed I, Abou Neel EA, Valappil SP, Nazhat SN, Pickup DM, Carta D, Carroll DL, Newport RJ, Smith ME, Knowles JC (2007) J Mater Sci 42:9827. doi: CrossRefGoogle Scholar
  12. 12.
    Pickup DM, Guerry P, Moss RM, Knowles JC, Smith ME, Newport RJ (2007) J Mater Chem 17:4777–4784CrossRefGoogle Scholar
  13. 13.
    Liu DM, Yang QZ, Troczynski T (2002) Biomaterials 23:691CrossRefGoogle Scholar
  14. 14.
    Achary SN, Jayakumar OD, Tyagi AK, Kulshresththa SK (2003) J Solid State Chem 176:37CrossRefGoogle Scholar
  15. 15.
    Walton RI, O’Hare D (2001) J Phys Chem Solids 62:1469CrossRefGoogle Scholar
  16. 16.
    Rehr JJ, Albers RC, Zabinsky SI (1992) Phys Rev Lett 69:3397CrossRefGoogle Scholar
  17. 17.
    Fletcher DA, McMeeking RF, Parkin D (1996) J Chem Inf Comput Sci 36:746CrossRefGoogle Scholar
  18. 18.
    Gorfman S, Tsirelson V, Pucher A, Morgenroth W, Pietsch U (2006) Acta Crystallogr A 62:1CrossRefGoogle Scholar
  19. 19.
    Cole JM, van Eck ERH, Mountjoy G, Anderson R, Brennan T, Bushnell-Wye G, Newport RJ, Saunders GA (2001) J Phys Condens Matter 13:4105CrossRefGoogle Scholar
  20. 20.
    Gaskell PH (1991) Materials science and technology. VCH, WeinheimGoogle Scholar
  21. 21.
    Kirkpatrick RJ, Brow RK (1995) Solid State Nucl Magn Reson 5:9CrossRefGoogle Scholar
  22. 22.
    MacKenzie KJD, Smith ME (2002) Multinuclear solid-state NMR of inorganic materials. Pergamon-Elsevier, OxfordGoogle Scholar
  23. 23.
    Shih PY, Ding JY, Lee SY (2003) Mater Chem Phys 80:391CrossRefGoogle Scholar
  24. 24.
    Byun JO, Kim BH, Hong KS, Jung HJ, Lee SW, Izyneev AA (1995) J Non-Cryst Solids 190:288CrossRefGoogle Scholar
  25. 25.
    Ilieva D, Jivov B, Bogachev G, Petkov C, Penkov I, Dimitriev Y (2001) J Non-Cryst Solids 283:195CrossRefGoogle Scholar
  26. 26.
    Baia L, Muresan D, Baia M, Popp J, Simon S (2007) Vib Spectrosc 43:313CrossRefGoogle Scholar
  27. 27.
    Orcel G, Phalippou J, Hench LL (1986) J Non-Cryst Solids 88:114CrossRefGoogle Scholar
  28. 28.
    Nishi K, Shimizu K, Takamatsu M, Yoshida H, Satsuma A, Tanaka T, Yoshida S, Hattori T (1998) J Phys Chem B 102:10190CrossRefGoogle Scholar
  29. 29.
    Charton P, Armand P (2004) J Non-Cryst Solids 333:307CrossRefGoogle Scholar
  30. 30.
    Krause M, Gruehn R (1995) Z Kristallogr 210:427Google Scholar
  31. 31.
    Hoppe U, Walter G, Kranold R, Stachel D (2000) J Non-Cryst Solids 263:29CrossRefGoogle Scholar
  32. 32.
    Pickup DM, Ahmed I, Guerry P, Knowles JC, Smith ME, Newport RJ (2007) J Phys Condens Matter 19:415116CrossRefGoogle Scholar
  33. 33.
    Brow RK (2000) J Non-Cryst Solids 263:1CrossRefGoogle Scholar
  34. 34.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, LondonGoogle Scholar
  35. 35.
    Livage J, Barboux P, Vandenborre MT, Schmutz C, Taulelle F (1992) J Non-Cryst Solids 147:18CrossRefGoogle Scholar
  36. 36.
    Nho YC, Kwon OH, Jie C (2002) Radiat Phys Chem 64:67CrossRefGoogle Scholar
  37. 37.
    Hoppe U, Ilieva D, Neuefeind J (2002) Z Naturforsch A Phys Sci 57:709CrossRefGoogle Scholar
  38. 38.
    Belkebir A, Rocha J, Esculcas AP, Berthet P, Poisson S, Gilbert B, Gabelica Z, Llabres G, Wijzen F, Rulmont A (2000) Spectrochim Acta A 56:423CrossRefGoogle Scholar
  39. 39.
    Skipper LJ, Sowrey FE, Pickup DM, Drake KO, Smith ME, Saravanapavan P, Hench LL, Newport RJ (2005) J Mater Chem 15:2369CrossRefGoogle Scholar
  40. 40.
    Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. M. Pickup
    • 1
    Email author
  • S. P. Valappil
    • 2
  • R. M. Moss
    • 1
  • H. L. Twyman
    • 1
  • P. Guerry
    • 3
  • M. E. Smith
    • 3
  • M. Wilson
    • 4
  • J. C. Knowles
    • 2
  • R. J. Newport
    • 1
  1. 1.School of Physical SciencesUniversity of KentCanterburyUK
  2. 2.Division of Biomaterials and Tissue EngineeringUCL Eastman Dental InstituteLondonUK
  3. 3.Department of PhysicsUniversity of WarwickCoventryUK
  4. 4.Division of Microbial DiseasesUCL Eastman Dental InstituteLondonUK

Personalised recommendations