Advertisement

Journal of Materials Science

, Volume 44, Issue 7, pp 1868–1872 | Cite as

The morphotropic phase boundary and electrical properties of (1 − x)Pb(Zn1/2W1/2)O3xPb(Zr0.5Ti0.5)O3 ceramics

  • O. Khamman
  • X. TanEmail author
  • S. Ananta
  • R. Yimnirun
Article

Abstract

Ceramics in the solid solution of (1 − x)Pb(Zn1/2W1/2)O3xPb(Zr0.5Ti0.5)O3 system, with x = 0.80, 0.85, 0.90, and 0.95, were synthesized with the solid-state reaction technique. The perovskite phase formation in the sintered ceramics was analyzed with X-ray diffraction. It shows that the rhombohedral and the tetragonal phases coexist in the ceramic with = 0.90, indicating the morphotropic phase boundary (MPB) within this pseudo-binary system. Dielectric and ferroelectric properties measurements indicate that the transition temperature decreases while the remanent polarization increases with the addition of Pb(Zn1/2W1/2)O3. In the composition of x = 0.85 which is close to the MPB in the rhombohedral side, a high piezoelectric property with d33 = 222 pC/N was observed.

Keywords

Perovskite Piezoelectric Property Ferroelectric Property Morphotropic Phase Boundary Remanent Polarization 

Notes

Acknowledgements

This work was supported by the National Science Foundation through the CAREER grant DMR-0346819 and the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), and the Faculty of Science, Chiang Mai University, Thailand.

References

  1. 1.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  2. 2.
    Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
  3. 3.
    Cross LE (1996) Mater Chem Phys 43:108CrossRefGoogle Scholar
  4. 4.
    Uchino K (2000) Ferroelectric devices. Marcel Dekker, Inc, New YorkGoogle Scholar
  5. 5.
    Vittayakorn N, Rujijanagul G, Tan X, Marquardt MA, Cann DP (2004) J Appl Phys 96:5103CrossRefGoogle Scholar
  6. 6.
    Vittayakorn N, Rujijanagul G, Tan X, He H, Marquardt MA, Cann DP (2006) J Electroceram 16:141CrossRefGoogle Scholar
  7. 7.
    Yimnirun R, Ananta S, Laoratanakul P (2005) J Eur Ceram Soc 25:3235CrossRefGoogle Scholar
  8. 8.
    White D, Zhao X, Besser MF, Tan X (2008) J Mater Sci 43:5258. doi: https://doi.org/10.1007/s10853-008-2772-1 CrossRefGoogle Scholar
  9. 9.
    Okai B, Yoshimoto J, Fujita T (1974) J Phys Soc Jpn 37:281CrossRefGoogle Scholar
  10. 10.
    Fujita T, Fukunaga O, Nakagawa T, Nomura S (1970) Mater Res Bull 5:759CrossRefGoogle Scholar
  11. 11.
    Lee WJ, Kim NK (2008) J Mater Sci 43:3608. doi: https://doi.org/10.1007/s10853-008-2574-5 CrossRefGoogle Scholar
  12. 12.
    Uchino K, Nomura S (1982) Ferroelectr Lett 44:55CrossRefGoogle Scholar
  13. 13.
    Smolenskii GA (1970) J Phys Soc Jpn 28(Suppl):26Google Scholar
  14. 14.
    Jin B, Kim J, Kim SC (1997) Appl Phys A 65:53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations