Journal of Materials Science

, Volume 44, Issue 5, pp 1251–1257 | Cite as

Investigation on thermo-stabilization effect and nonisothermal degradation kinetics of the new compound additives on polyoxymethylene

  • Jian Shi
  • Bo Jing
  • Xiaoxuan Zou
  • Hongjun Luo
  • Wenli DaiEmail author


An increase in the thermal stability of several new additives on polyoxymethylene (POM) was attempted via thermogravimetric analysis (TGA) (static state) and balance torque testing (dynamic state), which truly reflected the processing in practice. The thermal stability of POM was improved by adding some of additives actually, especially for the compound stabilizer with oxidized polyethylene wax (OPE), low molecular weight polyamide 6 (LMWPA6) and triphenyl phosphate (TPP) from the static and dynamic data. Furthermore, the kinetic parameters for compound stabilizers of POM degradation were calculated from thermogravimetry (TG) curves by Coats-Redfernd method. The results reveal that the degradation temperatures of POM can be obviously raised by compound stabilizers OPE/LMWPA6/TPP. The long-term thermo-stability test of POM shows that POM with stabilizing system above has no obvious decrease in impact strength after storage duration of 15 days in an oven at 140 °C.


Impact Strength Compound Stabilizer Melt Index Polyoxymethylene Onset Degradation Temperature 



We gratefully acknowledge the support by Hunan Provincial Natural Science Foundation of China (07JJ6016).


  1. 1.
    Hasegawa S, Takeshita H, Yoshii F et al (2000) Polymer 41:111CrossRefGoogle Scholar
  2. 2.
    Hisakatsu H, Kohji T (2003) Polymer 44:6973CrossRefGoogle Scholar
  3. 3.
    Showaib EA, Wyzgoski MG (2002) J Mater Sci 37:1895. doi: CrossRefGoogle Scholar
  4. 4.
    Pearson AWN, Groves GW (1976) J Polym Sci: Polym Phys Ed 14:903Google Scholar
  5. 5.
    Lüftl S, Archodoulaki VM, Seidler S (2006) Polym Degrad Stab 91:464CrossRefGoogle Scholar
  6. 6.
    Stohler FR, Berger K (1990) Angew Makromol Chem 176/177(3074):323CrossRefGoogle Scholar
  7. 7.
    Moulinié P, Paroli RM, Wang ZY, Delgado AH (1996) Polym Test 15:75CrossRefGoogle Scholar
  8. 8.
    Archodoulaki VM, Lüftl S, Seidler S (2008) Polym Test 27:236CrossRefGoogle Scholar
  9. 9.
    Alsup et al (1961) United States Patent no. 2, 993, 025Google Scholar
  10. 10.
    Johnson R W (1978) United States Patent no. 4, 098, 843Google Scholar
  11. 11.
    Hu YL, Ye L (2006) Polymer 47:2649CrossRefGoogle Scholar
  12. 12.
    Wagman M E et al (1987) United States Patent no. 4, 640, 949Google Scholar
  13. 13.
    Hu YL, Zheng X, Ye L (2005) J Appl Polym Sci 97:2387CrossRefGoogle Scholar
  14. 14.
    Li X, Qu MJ (2007) Plastic Manuf (Chinese) 1/2(150):77Google Scholar
  15. 15.
    Coats AW, Redfern JP (1964) Nature 201(4914):68CrossRefGoogle Scholar
  16. 16.
    Yu J (2001) Appl Eng Plast Chinese 29(4):28Google Scholar
  17. 17.
    Chang FC, Yang MY (1990) Polym Eng Sci 30:543CrossRefGoogle Scholar
  18. 18.
    Kumar G, Mahesh L, Neelakantan NR, Subramanisn N (1993) Polym Int 31:289Google Scholar
  19. 19.
    Lüftl S, Archodoulaki VM, Koch T, Seidler S (2008) J Vinyl Addit Technol 10:21CrossRefGoogle Scholar
  20. 20.
    Kern W (1967) Chemiker-Ztg/Chem Apparatur 91(8):255Google Scholar
  21. 21.
    Archodoulaki VM, Lüftl S, Seidler S (2004) Polym Degrad Stab 86(1):75CrossRefGoogle Scholar
  22. 22.
    Youliang Hu, Lin Ye, Xiaowen Zhao (2006) Polymer 47:2656Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian Shi
    • 1
    • 2
  • Bo Jing
    • 1
    • 3
  • Xiaoxuan Zou
    • 1
    • 3
  • Hongjun Luo
    • 1
    • 3
  • Wenli Dai
    • 1
    • 2
    Email author
  1. 1.College of Chemistry, Xiangtan UniversityHunanChina
  2. 2.Key Laboratory of Polymeric Materials & Application Technology of Hunan ProvinceXiangtan UniversityHunanChina
  3. 3.Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan ProvinceXiangtan UniversityHunanChina

Personalised recommendations