Journal of Materials Science

, Volume 44, Issue 7, pp 1881–1888 | Cite as

The mechanical and viscoelastic properties of SSBR vulcanizates filled with organically modified montmorillonite and silica

  • Hong Li
  • Jin Sun
  • Yihu Song
  • Qiang ZhengEmail author


The mechanical and the dynamic rheological behavior of solution-polymerized styrene butadiene rubber (SSBR) filled with compounding fillers organic montmorillonite (OMMT)/silica (SiO2) were studied. The mechanical properties of the vulcanizates could be improved by incorporation of low OMMT contents, and the best reinforcement effect appeared when 7 phr (parts per hundred rubber) OMMT was added. Moreover, due to the formation of the exfoliated silicate platelet in the matrix, a strong cooperative reinforcement effect to the vulcanizate could be gained for the vulcanizate containing 7 phr OMMT and 20 phr SiO2. Incorporation of SiO2 up to 50 phr to the vulcanizates with or without OMMT resulted in marked reinforcement effect, and the best mechanical properties were obtained for 7 phr OMMT filled composites. On the other hand, compounding fillers OMMT/SiO2 significantly influences the dynamic mechanical behavior of the vulcanizates. It was found that the compounding filler with a certain composition facilitated preparing SSBR vulcanizates with optimized wet traction, rolling resistance, and strength properties.


Carbon Black Dynamic Mechanical Analysis Vulcanization EPDM Reinforcement Effect 


  1. 1.
    Bokobza L, Chauvin JP (2005) Polymer 46:4144CrossRefGoogle Scholar
  2. 2.
    Gauthier C, Reynaud E, Vassoille R, Ladouce-Stelandre L (2004) Polymer 45:2761CrossRefGoogle Scholar
  3. 3.
    Wang YZ, Zhang LQ, Tang CH, Yu DS (2000) J Appl Poly Sci 78:1879CrossRefGoogle Scholar
  4. 4.
    Han M, Kim H, Kim E (2006) Nanotechnology 17:403CrossRefGoogle Scholar
  5. 5.
    Yeh MH, Hwang WS, Chang YC (2005) Jpn J Appl Phys 1 44:6847CrossRefGoogle Scholar
  6. 6.
    Wang SH, Zhang Y, Ren WT, Zhang YX, Lin HF (2005) Polym Test 24:766CrossRefGoogle Scholar
  7. 7.
    Arroyo M, Lopez-Manchado MA, Herrero B (2003) Polymer 44:2447CrossRefGoogle Scholar
  8. 8.
    Arroyo M, Lopez-Manchado MA, Valentin JL, Carretero J (2007) J Compos Sci Tech 67:1330CrossRefGoogle Scholar
  9. 9.
    Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku US (2006) J Appl Polym Sci 100:1083CrossRefGoogle Scholar
  10. 10.
    Wang JC, Chen YH (2008) J Appl Polym Sci 107:2059CrossRefGoogle Scholar
  11. 11.
    Jurkowska B, Jurkowski B, Oczkowski M, Pesetskii SS, Koval V, Olkhov YA (2007) J Appl Polym Sci 106:360CrossRefGoogle Scholar
  12. 12.
    Valadares LF, Leite CAP, Galembeck F (2006) Polymer 47:672CrossRefGoogle Scholar
  13. 13.
    Hwang WG, Wei KH, Wu CM (2006) Polym Eng Sci 46:80CrossRefGoogle Scholar
  14. 14.
    Wang YQ, Wu YP, Zhang HF, Zhao W, Wang CX, Zhang LQ (2005) Polym J 37:154CrossRefGoogle Scholar
  15. 15.
    Sadhu S, Bhowmick A (2005) J Mater Sci 40:1633. doi: CrossRefGoogle Scholar
  16. 16.
    Liu L, Jia DM, Luo YF, Guo BC (2006) J Appl Polym Sci 100:1905CrossRefGoogle Scholar
  17. 17.
    Kato M, Tsukigase A, Tanaka H, Usuki A, Inai I (2006) J Polym Sci A 44:1182CrossRefGoogle Scholar
  18. 18.
    Kader MA, Kim K, Lee YS, Nah C (2006) J Mater Sci 41:7341. doi: CrossRefGoogle Scholar
  19. 19.
    Wu YP, Wang YQ, Zhang HF, Wang YZ, Yu DS, Zhang LQ, Yang J (2005) Compos Sci Tech 65:1195CrossRefGoogle Scholar
  20. 20.
    Abdollahi M, Rahmatpour A, Aalaie J, Khanli HH (2007) E-Polymers, Article no. 074Google Scholar
  21. 21.
    Zhang ZJ, Zhang LN, Li Y, Xu HD (2006) J Appl Polym Sci 99:2273CrossRefGoogle Scholar
  22. 22.
    Das A, Jurk R, Stockelhuber KW, Engelhardt T, Fritzsche J, Kluppel M, Heinrich G (2008) J Macromol Sci A 45:144CrossRefGoogle Scholar
  23. 23.
    Jia QX, Wu YP, Lu M, He SJ, Wang YQ, Zhang LQ (2008) Compos Interface 15:193CrossRefGoogle Scholar
  24. 24.
    Zhang ZJ, Zhang LN, Li Y, Xu HD (2005) Polymer 46:129CrossRefGoogle Scholar
  25. 25.
    Zhang HF, Wang YQ, Wu YP, Zhang LQ, Yang J (2005) J Appl Polym Sci 97:844CrossRefGoogle Scholar
  26. 26.
    Acharya H, Srivastava SK, Bhowmick AK (2006) Polym Eng Sci 46:837CrossRefGoogle Scholar
  27. 27.
    Mohammadpour Y, Katbab AA (2007) J Appl Polym Sci 106:4209CrossRefGoogle Scholar
  28. 28.
    Zheng H, Zhang Y, Peng ZL, Zhang YX (2005) Polym Polym Compos 13:53Google Scholar
  29. 29.
    Ma Y, Wu YP, Wang YQ, Zhang LQ (2006) J Appl Polym Sci 99:914CrossRefGoogle Scholar
  30. 30.
    Sridhar V, Tripathy DK (2006) J Appl Polym Sci 101:3630CrossRefGoogle Scholar
  31. 31.
    Yang L, Hu Y, Lu HD, Song L (2006) J Appl Polym Sci 99:3275CrossRefGoogle Scholar
  32. 32.
    Wang JC, Chen YH, Jin QQ (2006) High Perform Polym 18:325CrossRefGoogle Scholar
  33. 33.
    Wang SJ, Long CF, Wang XY, Li Q, Qi ZN (1998) J Appl Polym Sci 69:1557CrossRefGoogle Scholar
  34. 34.
    Maiti M, Bhowmick AK (2006) J Polym Sci B 44:162CrossRefGoogle Scholar
  35. 35.
    Maiti M, Bhowmick AK (2006) Polymer 47:6156CrossRefGoogle Scholar
  36. 36.
    Maiti M, Mitra S, Bhowmick AK (2008) Polym Degrad Stabil 93:188CrossRefGoogle Scholar
  37. 37.
    Mathew G, Rhee JM, Lee YS, Park DH, Nah C (2008) J Indus Eng Chem 14:60CrossRefGoogle Scholar
  38. 38.
    Manchado MAL, Arroyo M, Herrero B, Vicente R (2004) Bol Soc Esp Ceram V 43:514CrossRefGoogle Scholar
  39. 39.
    Kim W, Kang BS, Cho SG, Ha CS, Bae JW (2007) Compos Interface 14:409CrossRefGoogle Scholar
  40. 40.
    Sadhu S, Bhowmick AK (2004) J Appl Polym Sci 92:698CrossRefGoogle Scholar
  41. 41.
    Wu YP, Ma Y, Wang YQ, Zhang LQ (2004) Macromol Mater Eng 289:890CrossRefGoogle Scholar
  42. 42.
    Maiti M, Sadhu S, Bhowmick AK (2005) J Appl Polym Sci 96:443CrossRefGoogle Scholar
  43. 43.
    Wu YP, Zhao W, Zhang LQ (2006) Macromol Mater Eng 291:944CrossRefGoogle Scholar
  44. 44.
    Wan CY, Dong W, Zhang YX, Zhang Y (2008) J Appl Polym Sci 107:650CrossRefGoogle Scholar
  45. 45.
    Akelah A, Rehab A, Agag T, Betiha M (2007) J Appl Polym Sci 103:3739CrossRefGoogle Scholar
  46. 46.
    Gatos KG, Karger-Kocsis J (2005) Polymer 46:3069CrossRefGoogle Scholar
  47. 47.
    Usuki A, Tukigase A, Kato M (2002) Polymer 43:2185CrossRefGoogle Scholar
  48. 48.
    Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Polymer 42:9513CrossRefGoogle Scholar
  49. 49.
    Leblanc JL (2000) J Appl Polym Sci 78:1541CrossRefGoogle Scholar
  50. 50.
    Derakhshandeh B, Shojaei A, Faghihi M (2008) J Appl Polym Sci 108:3808CrossRefGoogle Scholar
  51. 51.
    Schon F, Thomann R, Gronski W (2002) Macromol Symposia 189:105CrossRefGoogle Scholar
  52. 52.
    Lu YL, Li Z, Yu ZZ, Tian M, Zhang LQ, Mai YW (2007) Compos Sci Tech 67:2903CrossRefGoogle Scholar
  53. 53.
    Choi SS (2001) J Appl Polym Sci 79:1127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of EducationZhejiang UniversityHangzhouChina
  2. 2.National Engineering Research Center for Compounding and Modification of Polymeric MaterialsGuiyangChina
  3. 3.School of Material and Architectural EngineeringGuizhou Normal UniversityGuiyangChina

Personalised recommendations