Journal of Materials Science

, Volume 44, Issue 7, pp 1676–1686 | Cite as

Characterization of alumina interfaces in TBC systems

  • B. A. PintEmail author
  • K. L. More
Interface Science in Thermal Barrier Coatings


Interfacial segregants in thermally grown α-Al2O3 scales formed during high temperature exposure of thermal barrier coating systems reflect the oxygen-active dopants present in the bond coating and substrate, such as Y and Hf. These dopants diffuse outward and segregate to the substrate-alumina interface and the alumina grain boundaries. Related studies suggest that these segregants affect the growth and mechanical properties of the alumina-scale; however, the characterization of segregation in alumina formed on coated superalloy systems has been limited. Segregation examples evaluated using analytical transmission electron microscopy are given from traditional Pt-modified aluminide coatings and newer Pt diffusion coatings. Model systems are used to illustrate that grain boundary segregants on the columnar alumina boundaries are not because of the reverse diffusion of cations from the Y2O3-stabilized ZrO2 top coating, and that interstitial elements in the substrate likely affect the outward flux of cation dopants. The dynamic nature of this segregation and oxygen-potential gradient-driven diffusion is discussed in light of observations of substrate dopant and interstitial contents affecting coating performance.


HfO2 Thermal Barrier Coating Alumina Scale Aluminide Coating Bond Coating 



The authors would like to thank C. Leyens, DLR, Köln, Germany for coating the FeCrAl substrate; K. Cooley, L. D. Chitwood, G. Garner, K. S. Reeves, J. L. Moser, H. Longmire, and D. Coffey at ORNL for assistance with the experimental work; I. G. Wright and M. P. Brady at ORNL; P. Y. Hou at LBL for manuscript comments. This research was sponsored by the U.S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy (R. Dennis—program manager) under contract DE-AC05-00OR22725 with UT-Battelle, LLC.


  1. 1.
    Stecura S (1977) Am Ceram Soc Bull 56:1082Google Scholar
  2. 2.
    Miller RA (1984) J Am Ceram Soc 67:517Google Scholar
  3. 3.
    Strangman TE (1985) Thin Solid Films 127:93Google Scholar
  4. 4.
    Goward GW (1986) Mater Sci Technol 2:194Google Scholar
  5. 5.
    Cruse TA, Stewart SE, Ortiz M (1988) J Eng Gas Turbines Power 110:610Google Scholar
  6. 6.
    Goward GW (1998) Surf Coat Technol 108–109:73Google Scholar
  7. 7.
    Maloney MJ (2000) US Patent #6,117,560Google Scholar
  8. 8.
    Leckie RM, Krämer S, Rühle M, Levi CG (2005) Acta Mater 53:3281Google Scholar
  9. 9.
    Krämer S, Yang J, Levi CG (2008) J Am Ceram Soc 91:576Google Scholar
  10. 10.
    Borom MP, Johnson CA, Peluso LA (1996) Surf Coat Technol 86–87:116Google Scholar
  11. 11.
    Meier SM, Nissley DM, Sheffler KD, Cruse TA (1992) J Eng Gas Turbines Power 114:258Google Scholar
  12. 12.
    Opila EJ (2004) Mater Sci Forum 461–464:765Google Scholar
  13. 13.
    Wukusick CS, Collins JF (1964) Mater Res Stand 4:637Google Scholar
  14. 14.
    Gupta DK, Duvall DS (1984) In: Gell M et al (eds) Superalloys 1984. TMS, Warrendale, PA, p 711Google Scholar
  15. 15.
    Pint BA (1996) Oxid Met 45:1Google Scholar
  16. 16.
    Pint BA, Wright IG, Lee WY et al (1998) Mater Sci Eng A245:201Google Scholar
  17. 17.
    Ikeda Y, Nii K, Yoshihara K (1983) Trans Japan Inst Metals 24:207Google Scholar
  18. 18.
    Smeggil JG, Funkenbusch AW, Bornstein NS (1986) Met Trans 17A:923Google Scholar
  19. 19.
    Smialek JL, Jayne DT, Schaeffer JC, Murphy WH (1994) Thin Solid Films 253:285Google Scholar
  20. 20.
    Haynes JA, Pint BA, More KL et al (2002) Oxid Met 58:513Google Scholar
  21. 21.
    Cho J, Wang CM, Chan HM et al (1999) Acta Mater 47:4197Google Scholar
  22. 22.
    Yoshida H, Ikuhara Y, Sakuma T (2002) Acta Mater 50:2955Google Scholar
  23. 23.
    Veal BW, Paulikas AP, Gleeson B, Hou PY (2007) Surf Coat Technol 202:608Google Scholar
  24. 24.
    Tolpygo VK, Murphy KS, Clarke DR (2008) Acta Mater 56:489Google Scholar
  25. 25.
    Wu RT, Kawagishi K, Harada H, Reed RC (2008) Acta Mater 56:3622Google Scholar
  26. 26.
    Pint BA, Alexander KB (1998) J Electrochem Soc 145:1819Google Scholar
  27. 27.
    Zhang Y, Lee WY, Haynes JA et al (1999) Met Trans A 30A:2679Google Scholar
  28. 28.
    Zhang Y, Haynes JA, Pint BA, Wright IG (2005) Surf Coat Technol 200:1259Google Scholar
  29. 29.
    Gianuzzi LA, Stevie FA (1999) Micron 30(3):197Google Scholar
  30. 30.
    Golightly FA, Stott FH, Wood GC (1979) J Electrochem Soc 126:1035Google Scholar
  31. 31.
    Murphy KS, More KL, Lance MJ (2001) Surf Coat Technol 146–147:152Google Scholar
  32. 32.
    Braue W, Schulz U, Fritscher K et al (2005) Mater High Temp 22:393Google Scholar
  33. 33.
    Spitsberg I, More K (2006) Mater Sci Eng A417:322Google Scholar
  34. 34.
    Izumi T, Gleeson B (2006) Mater Sci Forum 522–523:221Google Scholar
  35. 35.
    Molins R, Hou PY (2006) Surf Coat Technol 201:3841Google Scholar
  36. 36.
    Bouhanek K, Adesanya OA, Stott FH et al (2001) Mater Sci Forum 369–372:615Google Scholar
  37. 37.
    Nicholls JR (2003) Mater Res Bull 28:659Google Scholar
  38. 38.
    Tawancy HM, Mohamed AI, Abbas NM et al (2003) J Mater Sci 38:3797. doi: Google Scholar
  39. 39.
    Gleeson B (2006) J Prop Power 22:375Google Scholar
  40. 40.
    Haynes JA, Pint BA, Zhang Y, Wright IG (2008) Surf Coat Technol 203:413Google Scholar
  41. 41.
    Mendis BG, Tryon B, Pollock TM, Hemker KJ (2006) Surf Coat Technol 201:3918Google Scholar
  42. 42.
    Xu T, Faulhaber S, Mercer C et al (2004) Acta Mater 52:1439Google Scholar
  43. 43.
    Mendis BG, Livi KJT, Hemker KJ (2006) Scr Mater 55:589Google Scholar
  44. 44.
    Levi CG, Sommer E, Terry SG et al (2003) J Am Ceram Soc 86:676Google Scholar
  45. 45.
    Hu M, Guo S, Tomimatsu T et al (2006) Surf Coat Technol 200:6130Google Scholar
  46. 46.
    Pint BA, More KL, Wright IG, Tortorelli PF (2000) Mater High Temp 17:165Google Scholar
  47. 47.
    Pint BA, More KL, Wright IG (2003) Mater High Temp 20:375Google Scholar
  48. 48.
    Schumann E, Schnotz G, Trumble KP, Rühle M (2005) Acta Met Mater 53:3281Google Scholar
  49. 49.
    Pint BA, Haynes JA, More KL, Wright IG (2004) In: Green KA et al (eds) Superalloys 2004. TMS, Warrendale, PA, p 597Google Scholar
  50. 50.
    Wright IG, Pint BA (2005) J Power Energy Proc IMechE 219:101Google Scholar
  51. 51.
    Sigler DR (1989) Oxid Met 32:337Google Scholar
  52. 52.
    Smialek JL, Pint BA (2001) Mater Sci Forum 369–372:459Google Scholar
  53. 53.
    Homma T, Hindam HM, Pyun Y, Smeltzer WW (1982) Oxid Met 17:223Google Scholar
  54. 54.
    Doychak J, Smialek JL, Mitchell TE (1989) Met Trans 20A:499Google Scholar
  55. 55.
    Roux JP, Brumm MW, Grabke HJ (1993) Fresenius J Anal Chem 346:265Google Scholar
  56. 56.
    Pint BA, Haynes JA, More KL et al (2000) In: Pollack TM et al (eds) Superalloys 2000. TMS, Warrendale, PA, p 629Google Scholar
  57. 57.
    Pint BA, More KL, Wright IG (2003) Oxid Met 59:257Google Scholar
  58. 58.
    Pint BA, Schneibel JH (2005) Scr Mater 52:1199Google Scholar
  59. 59.
    Cotell CM (1988) Effects of yttrium on the oxidation mechanisms of pure chromium. MIT, Cambridge, MAGoogle Scholar
  60. 60.
    Przybylski K, Yurek GJ (1989) Mater Sci Forum 43:1Google Scholar
  61. 61.
    Li CW, Kingery WD (1984) In: Structure and properties of MgO and Al2O3 ceramics, advances in ceramics, vol 10. Am Ceram Soc, Columbus, OH, p.368Google Scholar
  62. 62.
    Pint BA, Garratt-Reed AJ, Hobbs LW (2001) Oxid Met 56:119Google Scholar
  63. 63.
    Hiramatsu N, Stott FH (1999) Oxid Met 51:479Google Scholar
  64. 64.
    Pint BA, Garratt-Reed AJ, Hobbs LW (1998) J Am Ceram Soc 81:305Google Scholar
  65. 65.
    Naumenko D, Kochubey V, Niewolak L et al (2008) J Mater Sci 43:4550. doi: Google Scholar
  66. 66.
    Hou PY, Stringer J (1992) Oxid Met 38:323Google Scholar
  67. 67.
    Hou PY (2003) J Am Ceram Soc 86:660Google Scholar
  68. 68.
    Hou PY (2008) Annu Rev Mater Res 38:275Google Scholar
  69. 69.
    Ecer GM, Meier GH (1979) Oxid Met 13:159Google Scholar
  70. 70.
    Ramanarayanan TA, Raghavan M, Petkovic-Luton R (1984) J Electrochem Soc 131:923Google Scholar
  71. 71.
    Yurek GJ, Przybylski K, Garratt-Reed AJ (1987) J Electrochem Soc 134:2643Google Scholar
  72. 72.
    Pint BA (1994) Mater Res Bull 19(10):26Google Scholar
  73. 73.
    McLean D (1957) Grain boundaries in metals. Oxford University Press, LondonGoogle Scholar
  74. 74.
    Pint BA, Alexander KB, Monteiro OR, Brown IG (1998) In: Mishin Y et al (eds) Diffusion mechanisms in crystalline materials, Symp Proc, vol 527. MRS, Pittsburgh, PA, p 497Google Scholar
  75. 75.
    Doychak J (1994) In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds, vol 1: principles. Wiley, New York, p 977Google Scholar
  76. 76.
    N’Gandu Muamba JM, Streiff R, Boone DH (1987) Mater Sci Eng 88:111Google Scholar
  77. 77.
    Pint BA (2003) In: Tortorelli P F et al (ed) Proc. John Stringer symposium on high temperature corrosion, ASM International, Materials Park, OH, p 9Google Scholar
  78. 78.
    Pint BA (2003) J Am Ceram Soc 86:686Google Scholar
  79. 79.
    Naumenko D, Kochubey V, Le Coze J et al (2004) Mater Sci Forum 461–464:489Google Scholar
  80. 80.
    Li YZ, Wang CM, Chan HM et al (1999) J Am Ceram Soc 82:1497Google Scholar
  81. 81.
    Harris K, Wahl JB (2004) In: Green KA et al (eds) Superalloys 2004. TMS, Warrendale, PA, p 45Google Scholar
  82. 82.
    Kimmel J, Mutasim Z, Brentnall W (2000) J Eng Gas Turbines Power 122:393Google Scholar
  83. 83.
    Schulz U, Menzebach M, Leyens C, Yang YQ (2001) Surf Coat Technol 146–147:117Google Scholar
  84. 84.
    Toscano J, Vaßen R, Gil A et al (2006) Surf Coat Technol 201:3906Google Scholar
  85. 85.
    Quadakkers WJ, Huczkowski P, Naumenko D et al (2008) Mater Sci Forum 595–598:1111Google Scholar
  86. 86.
    Bouchet D, Lartigue-Korinek S, Molins R, Thibault J (2006) Phil Mag 86:1401Google Scholar
  87. 87.
    Milas I, Hinnemann B, Carter EA (2008) J Mater Res 23:1494Google Scholar
  88. 88.
    Schmalzried H, Laqua W, Lin PL (1979) Z Natur 34a:192Google Scholar
  89. 89.
    Petot-Ervas G, Petot C, Monceau D, Loudjani M (1992) Solid State Ionics 53–56:270Google Scholar
  90. 90.
    Kawada T, Watanabe T, Kaimai A et al (1998) Solid State Ionics 108:391Google Scholar

Copyright information

© US Government Employee 2009

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations