Journal of Materials Science

, Volume 44, Issue 4, pp 985–991 | Cite as

Model and analysis of size-stiffening in nanoporous cellular solids

  • Jun Wang
  • David C. C. LamEmail author


The size of the struts in nanoporous cellular solids typically has a secondary influence on the stiffness of the solids, but it leads to significant stiffening when it is on the same order as the higher-order material parameter. We examined this size-dependence using the higher-order finite-element method (FEM) in this study. Mathematical analysis showed that the displacement field that satisfies the conventional Lame equation can serve as a displacement field template in higher-order FEM. Benchmarking studies showed that results from simulations of beam bending and rod torsion using this FEM approach were in good agreement with results from analytical solutions and experiments. Using this approach, we showed that the stiffness of cellular solids is strongly affected by the cellular arrangement and the density when the cell size is on the order of the higher-order material parameter and that the stiffening behavior in nanoporous polyimide can be explained using higher-order theory. The FEM results also showed that a porous solid with half the weight can be engineered to become as stiff as a fully dense solid if the porous microarchitecture is tailored to take advantage of higher-order stiffening.


Polyimide Strain Gradient Couple Stress Couple Stress Theory Length Scale Parameter 



Jun Wang acknowledges support from the Shanghai Leading Academic Discipline Project (Project Number: B113). DCC Lam acknowledges funding support (615007, 615505, HKUST6190/03E) from the Research Grants Council of the HKSAR, China.


  1. 1.
    Ashby MF (2000) Metal foams: a design guide. Butterworth-Heinemann, BostonGoogle Scholar
  2. 2.
    Gibson LJ, Ashby MF (1982) Proc R Soc Lond 382:43CrossRefGoogle Scholar
  3. 3.
    Andrews EW, Gioux G, Onck P, Gibson LJ (2001) Int J Mech Sci 43:701CrossRefGoogle Scholar
  4. 4.
    Han SH, Do JS, Kader MA, Lee JH, Lee MH, Nah CW (2004) Polym Adv Technol 15:370CrossRefGoogle Scholar
  5. 5.
    Takeichi T, Zuo M, Ito A (1999) High Perform Polym 11:1CrossRefGoogle Scholar
  6. 6.
    Tekoglu C, Onck PR (2005) J Mater Sci 40:5911. doi: CrossRefGoogle Scholar
  7. 7.
    Lam DCC, Chong ACM, Yang F, Wang J, Tong P (2003) J Mech Phys Solids 51:1477CrossRefGoogle Scholar
  8. 8.
    McFarland AW, Colton JS (2005) J Micromech Microeng 15:1060CrossRefGoogle Scholar
  9. 9.
    Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Acta Metall Mater 42:475CrossRefGoogle Scholar
  10. 10.
    Lam DCC, Chong ACM (1999) J Mater Res 14:3784CrossRefGoogle Scholar
  11. 11.
    Ma O, Clarke DR (1995) J Mater Res 10:853CrossRefGoogle Scholar
  12. 12.
    Nix WD (1989) Metall Trans A 20:2217CrossRefGoogle Scholar
  13. 13.
    Poole WJ, Ashby MF, Fleck NA (1996) Scr Mater 34:559CrossRefGoogle Scholar
  14. 14.
    Stolken JS, Evans AG (1998) Acta Metall Mater 46:5109CrossRefGoogle Scholar
  15. 15.
    Ashby MF (1970) Philos Mag 21:399CrossRefGoogle Scholar
  16. 16.
    Chong ACM, Yang F, Lam DCC, Tong P (2001) J Mater Res 14:1052CrossRefGoogle Scholar
  17. 17.
    Lam DCC, Keung LH, Tong P (2008) J Mater Sci Eng A (submitted)Google Scholar
  18. 18.
    Cermal EA (1976) Continuum physics. Academic Press, New YorkGoogle Scholar
  19. 19.
    Fleck NA, Hutchinson JW (1993) J Mech Phys Solids 41:1825CrossRefGoogle Scholar
  20. 20.
    Fleck NA, Hutchinson JW (1997) Adv Appl Mech 33:295CrossRefGoogle Scholar
  21. 21.
    Toupin RA (1962) Arch Ration Mech Anal 11:385CrossRefGoogle Scholar
  22. 22.
    Koiter WT (1964) Proc K Ned Akad Wet (B) 67:17Google Scholar
  23. 23.
    Mindlin RD (1964) Arch Ration Mech Anal 16:51CrossRefGoogle Scholar
  24. 24.
    Mindlin RD (1965) Int J Solids Struct 1:417CrossRefGoogle Scholar
  25. 25.
    Yang F, Chong ACM, Lam DCC, Tong P (2002) Int J Solids Struct 39:2731CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials ScienceFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringThe Hong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations