Advertisement

Journal of Materials Science

, Volume 44, Issue 4, pp 998–1005 | Cite as

Unified description of martensite microstructure and kinetics

  • J. R. C. Guimarães
  • P. R. Rios
Article

Abstract

A quantitative metallography method is described to obtain size and number per unit volume of martensite units from linear intercept measurements. The entailed relationship between the number per unit volume of martensite plates and the volume fraction transformed is consistent with the autocatalytic nature of martensite. Application to the athermal and the isothermal martensite reactions allowed development of a unified microstructure-kinetic model. Validation of the model equations was achieved with data pertaining to FeNiC and FeNiMn alloys found in the literature. The apparent activation energy for propagation of isothermal martensite yielded by the transformation curve is compatible with the value obtained from the initial transformation rate. The defect redistribution process austenite/martensite established during the thickening of the plates has a crucial role in autocatalysis.

Keywords

Austenite Martensite Twin Boundary Martensite Plate Initial Reaction Rate 

Notes

Acknowledgements

One of the authors (P.R. Rios) is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and to Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, for his financial support. Thanks are due to Chris Hoffman (RMC Inc.) and to Professor H. Goldenstein (USP-SP) for their valuable assistance with the bibliography.

References

  1. 1.
    Zhao J-C, Notis MR (1995) Mater Sci Eng R 15:135CrossRefGoogle Scholar
  2. 2.
    Kurdjumov GV, Maximova OP (1948) Dokl Akad Nauk SSSR 61:83Google Scholar
  3. 3.
    Kurdjumov GV, Maximova OP (1950) Dokl Akad Nauk SSSR 73:95Google Scholar
  4. 4.
    Olson GB, Cohen M (1985) Principles of martensitic transformation, frontiers in materials technologies. Elsevier, Amsterdam, p 43Google Scholar
  5. 5.
    Ping X, Morris JW Jr (1993) Metall Trans A24:1281Google Scholar
  6. 6.
    Levitas VI, Idesman AV, Olson GB, Stein E (2002) Philos Mag 82:429CrossRefGoogle Scholar
  7. 7.
    Harris WJ, Cohen M (1949) Trans AIME 180:447Google Scholar
  8. 8.
    Koistinen DP, Marburger RE (1959) Acta Metall 7:59CrossRefGoogle Scholar
  9. 9.
    Rios PR, Guimarães JRC (2007) Scr Mater 57:1105CrossRefGoogle Scholar
  10. 10.
    Rios PR, Guimarães JRC (2008) Mater Res 11:103. doi: https://doi.org/10.1590/S1516-14392008000100020 CrossRefGoogle Scholar
  11. 11.
    van Bohemen SMC, Sietsma J, Hermans MJM, Richardson IM (2003) Acta Mater 51:4183CrossRefGoogle Scholar
  12. 12.
    Guimaraes JRC (2008) Mater Sci Eng A 476:106CrossRefGoogle Scholar
  13. 13.
    Guimarães JRC, Rios PR (2008) J Mater Sci. doi: https://doi.org/10.1007/s10853-008-2753-4 CrossRefGoogle Scholar
  14. 14.
    Cech RE, Turnbull D (1956) Trans AIME 206:124Google Scholar
  15. 15.
    Fisher JC, Hollomon JH, Turnbull D (1949) AIME Trans 185:691Google Scholar
  16. 16.
    McMurtrie MG, Magee CL (1970) Metall Trans 1:3185Google Scholar
  17. 17.
    Mendiratta MG, Krauss G (1972) Metall Trans 2:1755CrossRefGoogle Scholar
  18. 18.
    Chen WYC, Winchell PG (1976) Metall Trans A 7:1177CrossRefGoogle Scholar
  19. 19.
    Magee CL (1970) In: Aaronson HI (ed) Phase transformations. ASM, Metals Park, p 115Google Scholar
  20. 20.
    Coleman R (1989) Can J Stat 17:27CrossRefGoogle Scholar
  21. 21.
    Russ JC, Dehoff RT (2000) Practical stereology, 2nd edn. Kluwer Academic, New YorkCrossRefGoogle Scholar
  22. 22.
    Fullman RL (1953) Trans AIME 197:447Google Scholar
  23. 23.
    Guimarães JRC (1982) In: Aaronson HI et al (eds) Solid-solid phase transformations. TMS AIME, Warrendale, p 1415Google Scholar
  24. 24.
    Lin MF, Olson GB, Cohen M (1992) Metall Trans A 23:2987CrossRefGoogle Scholar
  25. 25.
    Guimarães JRC, Saavedra A (1985) Metall Trans A 16:329CrossRefGoogle Scholar
  26. 26.
    Guimarães JRC, Gomes JC (1979) In: Owen WS (ed) ICOMAT-1979 proceedings. MIT Press, Cambridge, p 59Google Scholar
  27. 27.
    Kelly PM (2006) Mater Sci Eng A 438:43CrossRefGoogle Scholar
  28. 28.
    Raghavan V, Entwisle AR (1965) Physical properties of martensite and bainite. ISI special report 93. Iron and Steel Institute, London, p 30Google Scholar
  29. 29.
    Pati SR, Cohen M (1971) Acta Metall 19:1327CrossRefGoogle Scholar
  30. 30.
    Christian JW (1965) Physical properties of martensite and bainite. ISI special report 93. Iron and Steel Institute, London, p 43Google Scholar
  31. 31.
    Entwisle AR (1965) Physical properties of martensite and bainite. ISI special report 93. Iron and Steel Institute, London, p 43Google Scholar
  32. 32.
    Kaufman L, Cohen M (1958) Prog Met Phys 7:165CrossRefGoogle Scholar
  33. 33.
    Borgenstam A, Hillert M (1997) Acta Mater 45:651CrossRefGoogle Scholar
  34. 34.
    Ghosh G, Raghavan V (1986) Mater Sci Eng 79:223CrossRefGoogle Scholar
  35. 35.
    Ghosh G (1988) Mater Sci Eng A 101:213CrossRefGoogle Scholar
  36. 36.
    Guimaraes JRC (2008) Mater Sci Technol 24:843CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Escola de Engenharia Industrial Metalúrgica de Volta RedondaUniversidade Federal FluminenseVolta RedondaBrazil
  2. 2.Sao PauloBrazil

Personalised recommendations