Advertisement

Journal of Materials Science

, Volume 44, Issue 4, pp 1035–1044 | Cite as

The ESC behaviour of a toughened PMMA after exposure to gamma radiation

  • A. R. Sousa
  • E. S. Araújo
  • M. S. RabelloEmail author
Article

Abstract

This work is a sequence of a previous one where we investigated the influence of gamma radiation dose on environmental stress cracking (ESC) of a conventional poly(methyl methacrylate) (PMMA) (Sousa et al. Polym Degrad Stab 92:1465, 2007). In that work, we observed that low doses of gamma radiation intensified the ESC effects, but on higher doses the gamma radiation effect was predominant over the stress cracking. The present work describes a similar study, but using a toughened PMMA (t-PMMA). The polymer was submitted to gamma radiation doses up to 100 kGy, and then tested to ESC susceptibility through tensile and relaxation tests. Two different types of active fluids were used: ethanol (an aggressive one) and ethylene glycol (a moderate liquid stress cracking agent), based on absorption results. A synergistic effect between ESC and radiation degradation was noted, with a substantial decay in mechanical properties when these two effects were present. The ethanol action caused dendritic pattern formation in the fracture surfaces of t-PMMA, as revealed by scanning electron microscopy.

Keywords

PMMA Gamma Radiation Intrinsic Viscosity Acrylonitrile Butadiene Styrene Rubber Particle 

Notes

Acknowledgement

ARS is grateful to CNPq for a PhD fellowship. This project was supported by CNPq.

References

  1. 1.
    Navarro RF, d’Almeida JRM, Rabello MS (2007) J Mater Sci 42:2167. doi: https://doi.org/10.1007/s10853-006-1387-7 CrossRefGoogle Scholar
  2. 2.
    Rabello MS, White JR (1996) Polym Comp 17:691CrossRefGoogle Scholar
  3. 3.
    Brostow W, Corneliussen H (1986) Failure of plastics. Hanser, MunichGoogle Scholar
  4. 4.
    Wright DC (1996) Environmental stress cracking of plastics. Rapra, ShawburyGoogle Scholar
  5. 5.
    Kawaguchi T, Nishimura H (2003) Polym Eng Sci 43:419CrossRefGoogle Scholar
  6. 6.
    Al-Saidi LF, Mortensen K, Almdal K (2003) Polym Degrad Stab 82:451CrossRefGoogle Scholar
  7. 7.
    Sousa AR, Araujo ES, Carvalho AL, Rabello MS, White JR (2007) Polym Degrad Stab 92:1465CrossRefGoogle Scholar
  8. 8.
    Kjellander CK, Nielsen TB, Kingshott P, Ghanbari-Siahkali A, Hansen CM, Almdal K (2008) Polym Degrad Stab 93:1486CrossRefGoogle Scholar
  9. 9.
    Sousa AR, Amorim KL, Medeiros ES, Melo TJA, Rabello MS (2006) Polym Degrad Stab 91:1504CrossRefGoogle Scholar
  10. 10.
    Timoteo GAV, Fechine GJM, Rabello MS (2007) Macromol Symp 258:162CrossRefGoogle Scholar
  11. 11.
    Timoteo GAV, Fechine GJM, Rabello MS (2008) Polym Eng Sci 48:2003CrossRefGoogle Scholar
  12. 12.
    Rabello MS (2000) Aditivação de Polímeros. Artliber Editora, São PauloGoogle Scholar
  13. 13.
    Biwa S, Ito N, Ohno N (2001) Mech Mater 33:717CrossRefGoogle Scholar
  14. 14.
    Argon AS, Cohen N (2003) Polymer 44:6013CrossRefGoogle Scholar
  15. 15.
    Lin CB, Lee S (1992) J Appl Polym Sci 44:2213CrossRefGoogle Scholar
  16. 16.
    Bernier GA, Kambour RP (1968) Macromolecules 1:393CrossRefGoogle Scholar
  17. 17.
    Arnold JC (1998) J Mater Sci 33:5193. doi: https://doi.org/10.1023/A:1004431920449 CrossRefGoogle Scholar
  18. 18.
    Sperling LH (1986) Introduction to physical polymer science. Wiley, New YorkGoogle Scholar
  19. 19.
    Suarez JCM, Blasi RSDE (2003) Polym Degrad Stab 82:221CrossRefGoogle Scholar
  20. 20.
    Ciuprina F, Teissedre G, Filippini JC (2001) Polymer 42:7841CrossRefGoogle Scholar
  21. 21.
    Meyer CT, Filippini JC (1979) Polymer 20:1186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Nuclear EnergyFederal University of PernambucoRecifeBrazil
  2. 2.Department of Materials EngineeringFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations