Advertisement

Journal of Materials Science

, Volume 44, Issue 7, pp 1664–1675 | Cite as

Environmental stability of the YSZ layer and the YSZ/TGO interface of an in-service EB-PVD coated high-pressure turbine blade

  • Wolfgang BraueEmail author
Interface Science in Thermal Barrier Coatings

Abstract

Hot corrosion of an in-service EB-PVD coated 1st stage high-pressure turbine (HPT) blade following an interactive CaSO4 infiltration/CMAS deposition process has produced reactive interfaces with the yttria stabilized zirconia (YSZ) top coat and the TGO layer which were investigated by analytical scanning and transmission electron microscopy (TEM). Despite complete CaSO4 infiltration of the coating macroscopic damage of the airfoil was confined to the pressure surface close to the trailing edge. Since the bulk composition of the CaSO4/CMAS deposits exhibited a high lime-to-silica ratio CaSO4/CMAS/YSZ interfaces typically involved a Ca–Zr-rich layer followed by fine-grained Ca-FSZ particles enveloping rounded YSZ column tips. No interfacial reaction was observed between the YSZ column walls and the CaSO4 pore fillings. Possible terms for the formation of this unique CaSO4/CMAS microstructure are evaluated. Zirconia destabilization upon hot corrosion is discussed in the light of phase compatibilities in the systems CaO–Y2O3–ZrO2 and CaO–ZrO2–SiO2 and put into perspective with previous work on both, natural and synthetic hot corrosion deposits.

Keywords

CaSO4 Bond Coat Yttria Stabilize Zirconia Thermally Grown Oxide Coat Interface 

Notes

Acknowledgements

C. W. Siry, O. Schubert, and T. Fischer of Lufthansa Technik AG, Power Plant Services-Engine Parts Repair, Hamburg, Germany are gratefully acknowledged for supplying the airfoil and their continuous support. The helpful discussions with DLR colleagues U. Schulz, K. Fritscher, C. Leyens, and P. Mechnich as well as the technical assistance from R. Borath are very much appreciated.

References

  1. 1.
    Siry CW, Wanzek H, Dau CP (2001) Materwiss Werksttech 32:650CrossRefGoogle Scholar
  2. 2.
    Evans AG, Mumm DR, Hutchison JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505CrossRefGoogle Scholar
  3. 3.
    Padture NP, Gell M, Jordan EH (2006) Science 296:280CrossRefGoogle Scholar
  4. 4.
    Jacobson NS, Fox DS, Smialek J, Opila E, Tortorelli P, Moore F, Nickel KL, Hirata G, Yoshida M, Yuri L (2003) In: Roode MV, Ferber M, Richerson DW (eds) Ceramic gas turbine component development and characterization: progress in ceramic gas turbine development, vol 2. The American Society of Mechanical Engineers, New York, p 607Google Scholar
  5. 5.
    Stringer J (1987) Mater Sci Technol 3:482CrossRefGoogle Scholar
  6. 6.
    Jones RL (1996) In: Stern KH (ed) Metallurgical and ceramic coatings. Chapman & Hall, LondonGoogle Scholar
  7. 7.
    Bornstein NS (1996) JOM 48:37CrossRefGoogle Scholar
  8. 8.
    Bornstein NS, Allen WP (1997) Mater Sci Forum 251–254:127CrossRefGoogle Scholar
  9. 9.
    Mohan P, Yuan B, Patterson T, Desai VH, Sohn YH (2007) J Am Ceram Soc 90:3601CrossRefGoogle Scholar
  10. 10.
    Leyens C, Wright IG, Pint BA (2000) Oxid Met 54:401CrossRefGoogle Scholar
  11. 11.
    Strangman T, Raybould D, Jameel A, Baker W (2007) Surf Coat Technol 202:658CrossRefGoogle Scholar
  12. 12.
    Kim J, Dunn MG, Baran J, Wade DP, Tremba EL (1993) J Eng Gas Turbines Power 115:641CrossRefGoogle Scholar
  13. 13.
    Smialek JL, Archer FA, Garlick RG (1994) JOM 139:41Google Scholar
  14. 14.
    Kräemer S, Yang J, Levi CG (2006) J Am Ceram Soc 89:3167CrossRefGoogle Scholar
  15. 15.
    Evans AG, Clarke DR, Levi CG (2008) J Eur Ceram Soc 28:1405CrossRefGoogle Scholar
  16. 16.
    Mercer C, Faulhaber S, Evans AG, Darolia R (2005) Acta Mater 53:1029CrossRefGoogle Scholar
  17. 17.
    Strangman T, Neumann J, Liu A (1987) NASA, CR-179648Google Scholar
  18. 18.
    Strangman T, Schienle JL (1990) J Eng Gas Turbines Power 112:531CrossRefGoogle Scholar
  19. 19.
    Stott FH, de Wet DJ, Taylor R (1994) MRS Bull 19(10):46CrossRefGoogle Scholar
  20. 20.
    Borom MP, Johnson CA, Peluso LA (1996) Surf Coat Technol 87–88:116CrossRefGoogle Scholar
  21. 21.
    Stott FH, de Wet DJ, Taylor R (1992) In: Froes FH, Wallace W, Cull RA (eds) 3rd international SAMPE metals and metals processing conference, vol 3, Advances in synthesis and processes. Stuckholt, Covinna, CA, pp 92–101Google Scholar
  22. 22.
    de Wet DJ, Stott FH (1993) J Phys IV 3(C9):655Google Scholar
  23. 23.
    Gupta DK, Duvall DS (1984) In: Gell M (ed) Superalloys 1984, TMS, Warrendale, PA, pp 711–720Google Scholar
  24. 24.
    Powder Diffraction Database PDF-2 (2000) JCPDS-ICDD: Joint Committee of Powder Diffraction Standards, International Center for Diffraction Data, Newton Square, PAGoogle Scholar
  25. 25.
    Taylor HFW (1997) Cement chemistry, 2nd edn. American Society of Civil Engineers, New YorkCrossRefGoogle Scholar
  26. 26.
    Prince AT (1954) J Am Ceram Soc 37:402CrossRefGoogle Scholar
  27. 27.
    Janke P (1982) Metall Mater Trans B 13:1543CrossRefGoogle Scholar
  28. 28.
    Dravid VP, Sung CM, Notis MR, Lyman CE (1989) Acta Crystallogr B 45:218CrossRefGoogle Scholar
  29. 29.
    Morgan PED, Hicks JL, Bump HA, Koutsoutis MS (1987) J Mater Sci Lett 6:559CrossRefGoogle Scholar
  30. 30.
    Ito T, Sadanaga R, Takeuchi Y, Tokonami M (1969) Proc Jpn Acad 45:913CrossRefGoogle Scholar
  31. 31.
    Braue W, Schulz U, Fritscher K, Leyens C, Wirth R (2005) Mater High Temp 22:393CrossRefGoogle Scholar
  32. 32.
    Sohn YH, Lee EY, Nagaraj BA, Briedermann RR, Sisson RD (2001) Surf Coat Technol 146–147:132CrossRefGoogle Scholar
  33. 33.
    Cocking JA, Burley NA, Johnston GR (1968) High Temp Technol 4:175Google Scholar
  34. 34.
    Marple BR, Voyer J, Moreau C, Nagy DR (2000) Mater High Temp 17:397CrossRefGoogle Scholar
  35. 35.
    Du H (2000) J Phase Equilib 21:6CrossRefGoogle Scholar
  36. 36.
    Kohl FJ, Stearns CA, Fryburg GC (1975) In: Foroulis ZA, Smeltzer FP, Marr J (eds) Metal-gas-slag reactions and processes, The Electrochemical Society, Princeton, NJ, p 649Google Scholar
  37. 37.
    Pliego-Cuervo YB, Glasser FP (1979) Cem Concr Res 9:573CrossRefGoogle Scholar
  38. 38.
    Glasser FP, Marr J (1980) Cem Concr Res 10:753CrossRefGoogle Scholar
  39. 39.
    Ondik HM, McMurdie HF (1998) Phase diagrams for zirconium and zirconia systems. The American Ceramic Society, WestervilleGoogle Scholar
  40. 40.
    Pandit SS, Jacob KT (1994) Steel Res 65:410CrossRefGoogle Scholar
  41. 41.
    Colin S, Dupre B, Venturini G, Malaman B, Gleitzer G (1993) J Solid State Chem 102:242CrossRefGoogle Scholar
  42. 42.
    Plaisir JR, Jansen J, de Graeff RAG, Ijdo JW (1995) J Solid State Chem 115:464CrossRefGoogle Scholar
  43. 43.
    Al-Hermezi HM, McKie D, Hall AJ (1986) Mineral Mag 50:119CrossRefGoogle Scholar
  44. 44.
    Ansell HG, Roberts AC, Plant AG, Sturman BD (1980) Can Mineral 18:201Google Scholar
  45. 45.
    Siligardi C, Lusvarghi L, Montorsi M, Vernia C (2008) J Am Ceram Soc 91:990CrossRefGoogle Scholar
  46. 46.
    Garcia J, Lopez T, Gomez R, Aguilar DH, Quintana P (2004) J Sol-Gel Sci Technol 32:333CrossRefGoogle Scholar
  47. 47.
    Kraemer S, Yang J, Levi CG (2008) J Am Ceram Soc 91:576CrossRefGoogle Scholar
  48. 48.
    Barbieri L, Cannillo V, Leonelli C, Montorsi M, Mustarelli P, Siligardi C (2003) J Phy Chem B 107:6519CrossRefGoogle Scholar
  49. 49.
    Karell R, Chromcikowa M, Liska M (2008) Adv Mater Res 39–40:173CrossRefGoogle Scholar
  50. 50.
    Mendis BG, Livi KJT, Hemker KJ (2006) Scripta Mater 55:649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.German Aerospace Center (DLR), Materials Research InstituteCologneGermany

Personalised recommendations