Journal of Materials Science

, Volume 44, Issue 4, pp 945–948 | Cite as

Complex permittivity and electromagnetic interference shielding properties of Ti3SiC2/polyaniline composites

  • Suilin Shi
  • Lingzhen Zhang
  • Junshou Li


Ti3SiC2/insulating polyaniline (Ti3SiC2/PANI) composites were prepared by solution blending and subsequently by hot-pressing process. The dielectric permittivity and electromagnetic interference (EMI) shielding effectiveness (SE) of the composites were determined in the frequency range of 8.2–12.4 GHz (X-band). Both real and imaginary permittivities increase with the increasing Ti3SiC2 content, and which are attributed to the enhanced displacement current and conduction current. The EMI SE of the composites can be greatly improved by addition of Ti3SiC2 filler, which may be ascribed to the increase of electrical conductivity of the composites. It is also found that the reflection of electromagnetic radiation is a dominant mechanism for EMI shielding of the composite. An average EMI SE of 23 dB can be achieved in the X-band range for the composite with 25 wt% Ti3SiC2 content, which shows the potential of the Ti3SiC2/PANI composites as EMI shielding materials for commercial applications.


PANI Complex Permittivity Conductive Filler Shield Effectiveness Solution Blending 



This work was supported by the National Natural Science Foundation of China (Grant No. 50572122).


  1. 1.
    Van Eck W (1985) Comput Secur 4:269CrossRefGoogle Scholar
  2. 2.
    Ezquerra TA, Kremer F, Mohammadi M, Ruhe J, Wegner G, Wessling B (1989) Synth Met 28:83CrossRefGoogle Scholar
  3. 3.
    Das NC, Khastgir D, Chaki TK, Chakraborty A (2000) Compos Part A Appl Sci Manuf 31:1069CrossRefGoogle Scholar
  4. 4.
    Chandrasekhar P, Naishadham K (1999) Synth Met 105:115CrossRefGoogle Scholar
  5. 5.
    Shinn ST, Fa YC (2001) Mater Sci Eng A 302:258CrossRefGoogle Scholar
  6. 6.
    Jing XL, Wang YY, Zhang BY (2005) J Appl Polym Sci 98:2149CrossRefGoogle Scholar
  7. 7.
    Kim MS, Kim HK, Byun SW, Jeong SH, Hong YK, Joo JS, Song KT, Kim JK, Lee CJ, Lee JY (2002) Synth Met 126:233CrossRefGoogle Scholar
  8. 8.
    Yang YL, Gupta MC, Dudley KL, Lawrence RW (2005) Nano Lett 5:2131CrossRefGoogle Scholar
  9. 9.
    Li Y, Chen CX, Zhang S, Ni YW, Huang J (2008) Appl Surf Sci 254:5766CrossRefGoogle Scholar
  10. 10.
    Das NC, Maiti S (2008) J Mater Sci 43:1920. doi: CrossRefGoogle Scholar
  11. 11.
    Barsoum MW, El-Raghy T (1996) J Am Ceram Soc 79:1953CrossRefGoogle Scholar
  12. 12.
    Low IM, Lee SK, Lawn BR, Barsoum MW (1998) J Am Ceram Soc 81:225CrossRefGoogle Scholar
  13. 13.
    Barsoum MW, El-Raghy T, Rawn CJ, Porter WD, Wang H, Payzant A, Hubbard C (1999) J Phys Chem Solid 60:429CrossRefGoogle Scholar
  14. 14.
    Yoo HI, Barsoum MW, El-Raghy T (2000) Nature 407:581CrossRefGoogle Scholar
  15. 15.
    Barsoum MW (2000) Prog Solid State Chem 28:201CrossRefGoogle Scholar
  16. 16.
    Barsoum MW, Yoo HI, El-Raghy T, Polushina IK, Rud YuV (2000) Phys Rev B 62:10194CrossRefGoogle Scholar
  17. 17.
    Shi SL, Pan W, Fang MH, Fang ZY (2005) Appl Phys Lett 87:172902CrossRefGoogle Scholar
  18. 18.
    Shi SL, Pan W, Hang RB, Wan CL (2006) Appl Phys Lett 88:052903CrossRefGoogle Scholar
  19. 19.
    Wu RF, Pan W, Shi SL, Han RB (2007) J Appl Phys 102:056104CrossRefGoogle Scholar
  20. 20.
    Shi SL, Zhang LZ, Li JS (2008) J Appl Phys 103:124103CrossRefGoogle Scholar
  21. 21.
    Sun ZM, Yang SL, Hashimoto H (2004) Ceram Int 30:1873CrossRefGoogle Scholar
  22. 22.
    Lagarkov AN, Sarychev AK (1996) Phys Rev B 53:6318CrossRefGoogle Scholar
  23. 23.
    Lee CY, Song HG, Jang KS, Oh EJ, Epstein AJ, Joo J (1999) Synth Met 102:1346CrossRefGoogle Scholar
  24. 24.
    Luo XC, Chung DDL (1999) Compos Part B Eng 30:227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Shijiazhuang Mechanical Engineering CollegeShijiazhuangPeople’s Republic of China

Personalised recommendations