Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2334–2342 | Cite as

Computational thermodynamics of Sc–Zr and Sc–Ti alloys using cluster variation method

  • Shrikant LeleEmail author
  • B. Nageswara Sarma
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday

Abstract

The cluster expansion method (for configurational enthalpy of mixing) and cluster variation method (for configurational entropy of mixing) (CE–CVM) together offer a systematic hierarchy of approximations for representation of phase diagram, thermochemical, thermophysical and structural data as opposed to the traditional CALPHAD methods which neglect the effects of local order and vibrational and electronic mixing contributions to the Gibbs function. The CE–CVM has not been very widely used for computation of phase equilibria since it is algebraically complex. A procedure has been developed for simultaneous nonlinear optimization of all the relevant data under the framework of CE–CVM. Vibrational and electronic mixing contributions have also been included using the CE method. The procedure has been successfully utilized for computing the solid-state regions of the phase diagrams of Sc–Zr and Sc–Ti. Debye temperatures and short-range order (sro) parameters have been calculated for these systems.

Keywords

Debye Temperature Cluster Expansion Simultaneous Optimization Phase Diagram Data Neighbor Pair 

References

  1. 1.
    Kikuchi R (1951) Phys Rev 81:988CrossRefGoogle Scholar
  2. 2.
    van Baal CM (1973) Physica 64:571CrossRefGoogle Scholar
  3. 3.
    Kikuchi R, de Fontaine D (1978) In: Applications of phase diagrams in metallurgy and ceramics. NBS Publication SP-496, p 967Google Scholar
  4. 4.
    Kikuchi R, Sato H (1974) Acta Metall 22:1099CrossRefGoogle Scholar
  5. 5.
    Mohri T, Sanchez JM, de Fontaine D (1985) Acta Metall 33:1171CrossRefGoogle Scholar
  6. 6.
    Ackermann H, Inden G, Kikuchi R (1989) Acta Metall 37:1CrossRefGoogle Scholar
  7. 7.
    Inden G (2001) In: Kostorz G (ed) Phase transformations in materials. Wiley-VCH, Weinheim, p 519Google Scholar
  8. 8.
    Sanchez JM, Ducastelle F, Gratias D (1984) Physica 128A:334CrossRefGoogle Scholar
  9. 9.
    Sarma BN (2000) Computation of optimized binary phase diagrams exhibiting CPH and BCC phases using cluster variation method. Ph.D. thesis, Banaras Hindu University, VaranasiGoogle Scholar
  10. 10.
    de Fontaine D (1994) Solid State Phys 47:33CrossRefGoogle Scholar
  11. 11.
    Saunders N, Miodownik AP (1998) CALPHAD: a comprehensive guide. Pergamon, OxfordGoogle Scholar
  12. 12.
    Lukas HL, Fries SG, Sundman, B (2007) Computational thermodynamics––the calphad method. CambridgeGoogle Scholar
  13. 13.
    Hillert M (1997) Calphad 21:143CrossRefGoogle Scholar
  14. 14.
    Lukas HL, Henig ETh, Zimmermann B (1977) Calphad 1:25CrossRefGoogle Scholar
  15. 15.
    Bale CW, Pelton AD (1983) Metall Trans 14B:77CrossRefGoogle Scholar
  16. 16.
    de Fontaine D (1979) Solid State Phys 34:73CrossRefGoogle Scholar
  17. 17.
    Finel A (1994) In: Turchi PEA, Gonis A (eds) Statics and dynamics of alloy phase transformations, NATO ASI Series, Series B, Physics, vol 319. Plenum Press, New York, p 495Google Scholar
  18. 18.
    McCormack R, Asta M, de Fontaine D, Garbulsky G, Ceder G (1993) Phys Rev B 48:6767CrossRefGoogle Scholar
  19. 19.
    Kikuchi R, van Baal CM (1974) Scr Metall 8:425CrossRefGoogle Scholar
  20. 20.
    Kikuchi R (1987) Physica 142A:321CrossRefGoogle Scholar
  21. 21.
    Dinsdale AT (1991) Calphad 15:317CrossRefGoogle Scholar
  22. 22.
    Grimvall G (1986) Thermophysical properties of materials. North-Holland, AmsterdamGoogle Scholar
  23. 23.
    Chen Q, Sundman B (2001) Acta Metall 49:947Google Scholar
  24. 24.
    Asta M, McCormack R, de Fontaine D (1993) Phys Rev B 48:748CrossRefGoogle Scholar
  25. 25.
    Lukas HL, Fries SG (1992) J Phase Equilib 13:532CrossRefGoogle Scholar
  26. 26.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993) Numerical recipes in C: The art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Federer WT (1963) Experimental design. Oxford & IBH, New DelhiGoogle Scholar
  28. 28.
    Daniel C, Wood FS (1971) Fitting Equations to Data. Wiley-Interscience, New YorkGoogle Scholar
  29. 29.
    Beaudry BJ, Daane AH (1963) Trans TMS-AIME 227:865Google Scholar
  30. 30.
    Palenzona A, Cirafici S (1991) J Phase Equilib 12:53CrossRefGoogle Scholar
  31. 31.
    Betterton JO Jr, Scarbrough JO (1968) Phys Rev 168:715CrossRefGoogle Scholar
  32. 32.
    Murray JL (1987) Phase diagrams of binary titanium alloys. ASM International, Ohio, p 284Google Scholar
  33. 33.
    Beaudry BJ, Daane AH (1962) Trans TMS-AIME 224:770Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Centre of Advanced Study, Department of Metallurgical Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations