Advertisement

Journal of Materials Science

, Volume 44, Issue 4, pp 1082–1093 | Cite as

Study of wear behaviour of austempered ductile iron

  • U. Ritha Kumari
  • P. Prasad Rao
Article

Abstract

An investigation was carried out to examine the influence of austempering temperature on microstructural parameters and the wear behaviour of austempered ductile iron. Ductile iron was austenitised at 900 °C for 30 min and austempered for 2 h at 260, 280, 300, 320, 350, 380 and 400 °C. Resulting microstructures were characterised through optical microscopy and X-ray diffraction. Wear test was carried out using a pin-on-disc machine with sliding speed of 289 m min−1. Coarse ausferrite microstructure exhibited higher wear rate than fine ausferrite microstructure. At high austempering temperature large amounts of austenite was instrumental in improving the wear resistance through formation of deformation induced martensite. Study of the wear surface under scanning electron microscope showed that, under dry sliding condition, wear occurred mainly due to adhesion and delamination. Wear rate was found to be dependent on the yield strength, austenite content and its carbon content.

Keywords

Ferrite Austenite Martensite Wear Resistance Wear Rate 

References

  1. 1.
    Dorazil E, Barta B, Munsterova E, Stransky L, Huvar A (1982) AFS Int Cast Metal 7:52Google Scholar
  2. 2.
    Janowak JF, Gundalach RB (1983) AFS Trans 91:377Google Scholar
  3. 3.
    Rouns TN, Rundman KB, Moore DM (1984) AFS Trans 92:815Google Scholar
  4. 4.
    Darwish N, Elliot R (1993) Mater Sci Technol 9:882CrossRefGoogle Scholar
  5. 5.
    Moore DJ, Rouns TN, Rundman KB (1985) AFS Trans 93:705Google Scholar
  6. 6.
    Moore DJ, Rouns TN, Rundman KB (1987) AFS Trans 95:765Google Scholar
  7. 7.
    Shea MM, Ryntz EF (1986) AFS Trans 94:683Google Scholar
  8. 8.
    Rundman KB, Moore DJ, Hayrynen KL, Dubensky WJ, Rouns TN (1988) J Heat Treat 5(2):79CrossRefGoogle Scholar
  9. 9.
    Bayati H, Elliot R (1995) Mater Sci Technol 11:285Google Scholar
  10. 10.
    Rao PP (1995) J Eng Mater Sci 2:24Google Scholar
  11. 11.
    Bahmani M, Elliot R, Varahram N (1997) J Mater Sci 32:4783. doi: https://doi.org/10.1023/A:1018687115732 CrossRefGoogle Scholar
  12. 12.
    Refaey A, Fatahalla N (2003) J Mater Sci 38:351. doi: https://doi.org/10.1023/A:1021177902596 CrossRefGoogle Scholar
  13. 13.
    Masud L, Martinez R, Simison S, Boeri R (2003) J Mater Sci 38:2971. doi: https://doi.org/10.1023/A:1024425727963 CrossRefGoogle Scholar
  14. 14.
    Lin C, Yang C, Wang J (2003) J Mater Sci 38:1667. doi: https://doi.org/10.1023/A:1023211323116 CrossRefGoogle Scholar
  15. 15.
    Li D, Zhou Z, Sun D (2004) J Mater Sci 39:7119. doi: https://doi.org/10.1023/B:JMSC.0000047563.46550.e6 CrossRefGoogle Scholar
  16. 16.
    Gundalach RB, Janowak JF (1985) Metal Prog 128(2):19Google Scholar
  17. 17.
    Gundalach RB, Janowak JF (1984) Amax Materials Research Center Report No. X G 184-02Google Scholar
  18. 18.
    Harding RA, Gillbert GNJ (1986) British Foundryman, IBF, Conference paper, BFS 79, p 489Google Scholar
  19. 19.
    Schmidt I (1984) Z Metallkd 75:747Google Scholar
  20. 20.
    Shah SM, Verhoeven JD (1986) Wear 113:267CrossRefGoogle Scholar
  21. 21.
    Schmidt I, Schuchert A (1987) Z Metallkd 78:871Google Scholar
  22. 22.
    Bartosiewicz L, Krause AR, Alberts FA, Singh I, Putatunda SK (1993) Mater Charact 30:221CrossRefGoogle Scholar
  23. 23.
    Shanmugam P, Rao PP, Udupa KR, Venkataraman N (1994) J Mater Sci 29:4933. doi: https://doi.org/10.1007/BF00356546 CrossRefGoogle Scholar
  24. 24.
    Bahmani M, Elliot R, Varahram N (1997) J Mater Sci 32:5383. doi: https://doi.org/10.1023/A:1018631314765 CrossRefGoogle Scholar
  25. 25.
    Lin C, Chang C (2002) J Mater Sci 37:709. doi: https://doi.org/10.1023/A:1013827511859 CrossRefGoogle Scholar
  26. 26.
    Jayamathy M, Vasanth R (2003) SAE Trans 112(3):2066Google Scholar
  27. 27.
    Yasutoune A, Ryohei I, Yoji M, Masahito G (2004) JSME Symposium on Motion and Power Transmissions, p 138Google Scholar
  28. 28.
    Brezina R, Filipek J, Senberger J (2008) Res Agr Eng 50:75CrossRefGoogle Scholar
  29. 29.
    Rimmer A (2006) Foundry Trade J 180:58Google Scholar
  30. 30.
    Prado JM, Pujol A, Cullel J, Tartera J (1995) Mater Sci Technol 11:294CrossRefGoogle Scholar
  31. 31.
    Owhadi A, Hedjazi J, Davami P (1998) Mater Sci Technol 14:245CrossRefGoogle Scholar
  32. 32.
    Ahmadabadi MN, Nategh S, Davami P (1992) J Cast Metals 4:188CrossRefGoogle Scholar
  33. 33.
    Shepperson S, Allen C (1988) Wear 121:271CrossRefGoogle Scholar
  34. 34.
    Vuorinen J (1986) In: Proceedings of 2nd international conference on austempered ductile iron, Ann Arbor, MI, USA, p 179Google Scholar
  35. 35.
    Gundalach RB, Janowak JF (1986) In: Proceedings of 2nd international conference on austempered ductile iron, Ann Arbor, MI, USA, p 23Google Scholar
  36. 36.
    Gundalach RB, Janowak JF (1987) Wear 11:171Google Scholar
  37. 37.
    Zum-Gahr KH (1979) Metal Prog 116(4):46Google Scholar
  38. 38.
    Velez JM (2001) Wear 251:1315CrossRefGoogle Scholar
  39. 39.
    Mohan S, Prakash V, Pathak JP (2002) Wear 252:16CrossRefGoogle Scholar
  40. 40.
    Zhou WS, Zhou QD, Meng SK (1993) Wear 162–164:696Google Scholar
  41. 41.
    Daber S, Rao PP (2008) J Mater Sci 43:357. doi: https://doi.org/10.1007/s10853-007-2258-6 CrossRefGoogle Scholar
  42. 42.
    Daber S, Ravishankar KS, Rao PP (2008) J Mater Sci 43:4929. doi: https://doi.org/10.1007/s10853-008-2717-8 CrossRefGoogle Scholar
  43. 43.
    Boutorabi SMA, Young JM, Kondic V (1993) Wear 175:19CrossRefGoogle Scholar
  44. 44.
    Ahmadabadi MN, Ghasemi HM, Osia M (1999) Wear 231:293CrossRefGoogle Scholar
  45. 45.
    Rundman KB, Klug RC (1982) AFS Trans 90:499Google Scholar
  46. 46.
    Cullity BD (1974) Elements of X-ray diffraction. Addison-Wesley, Reading, MA, p 411Google Scholar
  47. 47.
    Roberts CS (1953) Trans AIME 197:203Google Scholar
  48. 48.
    Rao PP, Putatunda SK (1988) Mater Sci Technol 14:1257CrossRefGoogle Scholar
  49. 49.
    Voigt RC, Loper CR (1984) In: Proceedings of Ist international conference on austempered ductile iron, ASM, Metals Park, OH, p 83Google Scholar
  50. 50.
    Rao PP, Putatunda SK (1997) Metal Mater Trans A 28A:1457CrossRefGoogle Scholar
  51. 51.
    Rao PP (1995) Indian J Eng Mater Sci 2:24Google Scholar
  52. 52.
    Hayrynen KL, Moore DJ, Rundman KB (1990) AFS Trans 98:471Google Scholar
  53. 53.
    Ali ASH, Uzlov KI, Darwish N, Elliot R (1994) Mater Sci Technol 10:35CrossRefGoogle Scholar
  54. 54.
    Hollomon TH (1945) Trans AIME 162:268Google Scholar
  55. 55.
    Tommita Y (1995) J Mater Sci 30:105. doi: https://doi.org/10.1007/BF00352138 CrossRefGoogle Scholar
  56. 56.
    Reisner G, Werner EA, Kerschbaummaur P, Papst I, Fisher FD (1997) J Mater 49(9):62Google Scholar
  57. 57.
    De Meyer M, Vanderschueren D, de Cooman BC (1999) ISIJ Int 39(8):813CrossRefGoogle Scholar
  58. 58.
    Bai DQ, Chiro AD, Yue S (1998) Mater Sci Forum 284–286:253CrossRefGoogle Scholar
  59. 59.
    Chen HC, Era H, Shimizu M (1989) Metall Trans A 20:437CrossRefGoogle Scholar
  60. 60.
    Miihkinen VTT, Edmonds DV (1987) Mater Sci Technol l3:422CrossRefGoogle Scholar
  61. 61.
    Brandt ML, Olson GB (1993) Iron Steel Maker 20(5):55Google Scholar
  62. 62.
    Takahashi M, Bhadheshia HKDH (1991) Mater Trans JIM 32:689CrossRefGoogle Scholar
  63. 63.
    Wang J, Van der Zwaag S (2001) Metal Mater Trans A 32(6):1527CrossRefGoogle Scholar
  64. 64.
    Tsukatani I, Hashimoto S, Inoue T (1991) ISIJ Int 31(9):992CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.A.B. Shetty Memorial Institute of Dental ScienceMangaloreIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaMangaloreIndia

Personalised recommendations