Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 875–881 | Cite as

High-porosity NiTi superelastic alloys fabricated by low-pressure sintering using titanium hydride as pore-forming agent

  • H. Li
  • B. Yuan
  • Y. Gao
  • C. Y. Chung
  • M. ZhuEmail author
Article

Abstract

Porous NiTi shape memory alloys (SMAs) were successfully fabricated by low-pressure sintering (LPS), and the pore features have been controlled by adjusting the processing parameters. The porous NiTi SMAs with high porosity (45%) and large pore size (200–350 μm) can be prepared by LPS using TiH1.5 as pore-forming agent. These alloys exhibit isotropic pore structure with three-dimensional interconnected pores. The porous NiTi SMA produced by LPS exhibits superelasticity and mechanical properties superior to that by conventional sintering.

Keywords

Spark Plasma Sinter Conventional Sinter Titanium Hydride Ultimate Compressive Strength Porous NiTi 

Notes

Acknowledgements

The authors acknowledge the support from National Natural Science Foundation of China (No.50701019), China Postdoctoral Science Foundation (No. 20060390199), the Ministry of Education (Project No IRT0551), Guangdong Provincial Natural Science Foundation (2005 Team project), and City University of Hong Kong Grant (Project No.7002215).

References

  1. 1.
    Bansiddhi A, Sargeant TD, Stupp SI et al (2008) Acta Biomater 4:773CrossRefGoogle Scholar
  2. 2.
    Zhao Y, Taya M, Izui H (2006) Int J Solid Struct 43:497CrossRefGoogle Scholar
  3. 3.
    Zhou JB, Gao LP, Wang KS (2005) J Rare Earth 23:449Google Scholar
  4. 4.
    Levine B (2008) Adv Eng Mater 10:788CrossRefGoogle Scholar
  5. 5.
    Green SM, Grant DM, Kelly NR (1997) Powder Metall 40:43CrossRefGoogle Scholar
  6. 6.
    Li BY, Rong LJ, Li YY (1998) J Mater Res 13:2847CrossRefGoogle Scholar
  7. 7.
    Otaguchi M, Kaieda Y, Oguro N (1990) J Japan Inst Metals 54:214CrossRefGoogle Scholar
  8. 8.
    Li BY, Rong LJ, Li YY, Gjunter VE (2000) J Mater Res 15:10CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Taya M, Kang YS, Kawasaki A (2005) Acta Mater 53:337CrossRefGoogle Scholar
  10. 10.
    Vandygriff EC, Lagoudas DC, Thangarai JK, Chen YC (2000) Proceedings of ASC 15th annual technical conference. Technomic Publishing Co Inc., Lancaster, p 239Google Scholar
  11. 11.
    Yuan B, Chung CY, Zhu M (2004) Mater Sci Eng A 382:181CrossRefGoogle Scholar
  12. 12.
    Bansiddhi A, Dunand D (1612) Intermetallics 15:1612CrossRefGoogle Scholar
  13. 13.
    Zhang YP, Yuan B, Zeng MQ, Chung CY, Zhang XP (2007) J Mater Process Technol 192:439CrossRefGoogle Scholar
  14. 14.
    Yuan B, Zhu M, Gao Y, Chung CY (2008) Smart Mater Struct 17:025013CrossRefGoogle Scholar
  15. 15.
    Li BY, Rong LJ, Li YY, Gjunter VE (2000) Metall Mater Trans A 31:1867CrossRefGoogle Scholar
  16. 16.
    Ayers RA, Simske SJ, Bateman TA (1999) J Biomed Mater Res 45:42CrossRefGoogle Scholar
  17. 17.
    Barin I (1989) Thermochemical data of pure substances. Weinheim, Federal Republic of Germany; VCH, New YorkGoogle Scholar
  18. 18.
    Bataillard L, Bidaux E, Gotthardt R (1998) Philos Magn 78:327CrossRefGoogle Scholar
  19. 19.
    Miyazaki S, Otsuka K, Wayman CM (1989) Acta Metall 37:1873CrossRefGoogle Scholar
  20. 20.
    Su PC, Wu SK (2004) Acta Mater 52:1117CrossRefGoogle Scholar
  21. 21.
    Wu SL, Liu XM, Chu PK (2008) J Alloy Compd 449:139CrossRefGoogle Scholar
  22. 22.
    Carroll MC, Somsen CH, Eggler G (2004) Scr Mater 50:187CrossRefGoogle Scholar
  23. 23.
    Filip P, Mazanec K (2001) Scr Mater 45:701CrossRefGoogle Scholar
  24. 24.
    Allafi JK, Dlouhy A, Eggeler G (2002) Acta Mater 50:4255CrossRefGoogle Scholar
  25. 25.
    Porter DA, Easterling KE (1997) Phase transformations in metals and alloys. Reprinted 2nd edn. Chapman and Hall, LondonGoogle Scholar
  26. 26.
    Zhou YM, Zhang J, Fan GL et al (2005) Acta Mater 53:5365CrossRefGoogle Scholar
  27. 27.
    Wu SL, Chung CY, Liu XM et al (2007) Acta Mater 55:3437CrossRefGoogle Scholar
  28. 28.
    Li BY, Rong LJ, Li YY (2000) Intermetallics 8:643CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Physics & Materials ScienceCity University of Hong KongKowloonHong Kong

Personalised recommendations