Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 926–930 | Cite as

Preparation of γ-Fe2O3 nanopowders by direct thermal decomposition of Fe-urea complex: reaction mechanism and magnetic properties

  • S. Zhao
  • H. Y. Wu
  • L. Song
  • O. Tegus
  • S. AsuhaEmail author
Article

Abstract

In this work, a novel method of producing maghemite (γ-Fe2O3) nanopowders has been developed, which can be performed by the direct thermal decomposition of an Fe–urea complex ([Fe(CON2H4)6](NO3)3) in a single step. The reaction mechanism, particle morphology, and the magnetic properties of the γ-Fe2O3 nanopowders have been studied by using thermogravimetric (TG), differential scanning calorimetry (DSC), fourier transformed infrared (FTIR) spectroscopy, elemental analysis, X-ray powder diffraction (XRD), transmission electron micrograph (TEM) observations, and magnetic measurements. Thermal analyses together with the results of XRD show that the formation of γ-Fe2O3 occurs at ~200 °C through a two-stage thermal decomposition of the [Fe(CON2H4)6](NO3)3 complex. The resulting iron oxide phases (i.e., γ-Fe2O3 and α-Fe2O3) are strongly dependent on the synthesis conditions of the [Fe(CON2H4)6](NO3)3. When the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 that is used for the synthesis of [Fe(CON2H4)6](NO3)3 is 1:6 (i.e., molar ratio in stoichiometry), a mixed phase of γ-Fe2O3 and α-Fe2O3 is formed. When the molar ratio is 1:6.2 (i.e., using an excess CON2H4), on the other hand, a pure γ-Fe2O3 is obtained. Magnetic measurements show that resulting nanopowders exhibit a ferromagnetic characteristic and their maximum saturation magnetization increases from 47.2 to 67.4 emu/g with an increase in the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 from 1:6 to 1:6.2.

Keywords

Differential Scanning Calorimetry Transmission Electron Micrograph Total Weight Loss JCPDS File Ferric Nitrate 

References

  1. 1.
    Yan ZJ, Xue DS (2008) J Mater Sci 43:771. doi: https://doi.org/10.1007/s10853-007-2046-3 CrossRefGoogle Scholar
  2. 2.
    Chen XH, Song HAH (2007) J Mater Sci 42:8738. doi: https://doi.org/10.1007/s10853-007-1825-1 CrossRefGoogle Scholar
  3. 3.
    Dhara S, Rastogi AC, Das BK (1993) J Appl Phys 74:7019CrossRefGoogle Scholar
  4. 4.
    Neuberger T, Schöpf B, Hofmann H, Hofmann M, Rechenberg BV (2005) J Magn Magn Mater 293:483CrossRefGoogle Scholar
  5. 5.
    Lominicki S, Dellinger B (2003) Environ Sci Technol 37:4254CrossRefGoogle Scholar
  6. 6.
    Zayat M, Monte F, Morales MP, Rosa G, Guerrero H, Serna CJ, Levy D (2003) Adv Mater 15(21):1809CrossRefGoogle Scholar
  7. 7.
    Grimm S, Schultz M, Barth S, Muller R (1997) J Mater Sci 32:1083. doi: https://doi.org/10.1023/A:1018598927041 CrossRefGoogle Scholar
  8. 8.
    Mcmichael RD, Shull RD, Swartzendruber LJ, Watson RE (1992) J Magn Magn Mater 111:29CrossRefGoogle Scholar
  9. 9.
    Chen F, Xie Y, Zhao J, Lu G (2001) Chemosphere 44:1159CrossRefGoogle Scholar
  10. 10.
    Apte SK, Naik SD, Sonawane RS, Kale BB (2007) J Am Ceram Soc 90:412CrossRefGoogle Scholar
  11. 11.
    Prasad NK, Panda D, Singh S, Mukadam MD, Yusuf SM, Bahadur D (2005) J Appl Phys 97:10Q903CrossRefGoogle Scholar
  12. 12.
    Kojima K, Miyazaki M (1997) J Sol-Gel Sci Tech 8:77Google Scholar
  13. 13.
    Cannas C, Concas G, Falgui A, Musinu A, Spano G, Piccaluga G (2001) J Non Cryst Solids 286:64CrossRefGoogle Scholar
  14. 14.
    Solinas S, Piccaluga G, Morales MP, Serna CJ (2001) Acta Mater 49:2805CrossRefGoogle Scholar
  15. 15.
    Ortega D, Garitaonandia JS, Barrera-Solano C, Bamírez-del-Solar M, Blanco E, Domínguez M (2006) J Non Cryst Solids 352:2801CrossRefGoogle Scholar
  16. 16.
    Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) J Am Chem Soc 123:12798CrossRefGoogle Scholar
  17. 17.
    Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Oh SJ (2004) J Am Chem Soc 126:1950CrossRefGoogle Scholar
  18. 18.
    Ravindranathan P, Patil KC (1986) J Mater Sci Lett 5:221CrossRefGoogle Scholar
  19. 19.
    Li D, Wu D, Zhu J, Wang X, Lu L, Yang X (2003) J Mater Sci Lett 22:931CrossRefGoogle Scholar
  20. 20.
    Yang S, Yi J-H, Son S, Jang J, Altman I, Pikhitsa P, Choi M (2003) Appl Phys Lett 83:4842CrossRefGoogle Scholar
  21. 21.
    Inamdar SN, Haram SK (2006) J Nanosci Nanotechnol 6:2155CrossRefGoogle Scholar
  22. 22.
    Deshpande K, Mukasyan A, Varma A (2004) Chem Mater 16:4896CrossRefGoogle Scholar
  23. 23.
    Penland RB, Mizushima S, Curran C, Quagliano JV (1957) J Am Chem Soc 79:1575CrossRefGoogle Scholar
  24. 24.
    Nogami M, Asuha N (1993) J Mater Sci Lett 12:1705CrossRefGoogle Scholar
  25. 25.
    Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW (2004) Chem Mater 16:2814CrossRefGoogle Scholar
  26. 26.
    Jing Z (2006) Mater Lett 60:2217CrossRefGoogle Scholar
  27. 27.
    Morales MP, Veitemillas-Verdaguer S, Montero MI, Sema CJ, Roig A, Casas LI, Martínez B, Sandiumenge F (1999) Chem Mater 11:3058CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Zhao
    • 1
  • H. Y. Wu
    • 1
  • L. Song
    • 2
  • O. Tegus
    • 2
  • S. Asuha
    • 1
    Email author
  1. 1.Chemistry & Environment Science CollegeInner Mongolia Normal University, Key Laboratory of Physics and Chemistry of Function MaterialsHohhotChina
  2. 2.Physics & Electronic Information CollegeInner Mongolia Normal University, Key Laboratory of Physics and Chemistry of Function MaterialsHohhotChina

Personalised recommendations