Advertisement

Journal of Materials Science

, Volume 44, Issue 7, pp 1741–1749 | Cite as

Effect of dopants on alumina grain boundary sliding: implications for creep inhibition

  • Ivan Milas
  • Emily A. CarterEmail author
Interface Science in Thermal Barrier Coatings

Abstract

We investigate by means of periodic density functional theory the mechanism of grain boundary sliding along the α-alumina Σ11 tilt grain boundary. We identify minimum and maximum energy structures along a preferential sliding pathway for the pure grain boundary, as well as for grain boundaries doped with a series of early transition metals, as well as barium, gadolinium, and neodymium. We predict that the segregation of those dopants results in a considerable increase in the grain boundary sliding barrier. Grain boundary sliding occurs by a series of bond breaking and forming across the grain boundary. Our results suggest that the presence of large cations inhibits the regeneration of bonds during sliding, which results in a decrease in total number of bonds across the grain boundary interface, thereby raising the barrier to sliding. Trends in predicted grain boundary sliding energies are in good agreement with recently measured creep activation energies in polycrystalline alumina, lending further credence to the notion that grain boundary sliding plays a dominant role in alumina creep.

Keywords

Creep Rate Lattice Vector Bond Coat Energy Structure Thermally Grown Oxide 

Notes

Acknowledgements

We are grateful to the Air Force Office of Scientific Research for financial support, to the NAVO and ERDC DoD high performance computing centers for supercomputing time, and to Drs. Berit Hinnemann and Ashwin Ramasubramaniam, and Prof. Nicholas Mosey for helpful discussions.

References

  1. 1.
    Padture NP, Gell M, Jordan EH (2002) Science 296:280CrossRefGoogle Scholar
  2. 2.
    Evans AG, Mumm DR, Hutchinson JW et al (2001) Prog Mater Sci 46:505CrossRefGoogle Scholar
  3. 3.
    Cho J, Wang M, Chan HM et al (1999) Acta Mater 47:4197CrossRefGoogle Scholar
  4. 4.
    Cho J, Wang M, Chan HM et al (2001) J Mater Res 16:425CrossRefGoogle Scholar
  5. 5.
    Coble RL (1963) J Appl Phys 34:1679CrossRefGoogle Scholar
  6. 6.
    Lifshitz IM (1963) Sov Phys JETP 17:909Google Scholar
  7. 7.
    Haynes JA, Ferber MK, Porter WD et al (1999) Oxid Met 52:31CrossRefGoogle Scholar
  8. 8.
    Langdon TG (1970) Philos Mag 22:689CrossRefGoogle Scholar
  9. 9.
    Ashby MF, Verrall RA (1973) Acta Met 21:149Google Scholar
  10. 10.
    Nieh TG, Wadsworth J (1990) Annu Rev Mater Sci 20:117CrossRefGoogle Scholar
  11. 11.
    Ruano OA, Wadsworth J, Sherby OD (2003) Acta Mater 51:3617CrossRefGoogle Scholar
  12. 12.
    Rachinger WR (1952–53) J Inst Met 81:33Google Scholar
  13. 13.
    Langdon TG (2006) J Mater Sci 41:597. doi: https://doi.org/10.1007/s10853-006-6476-0 CrossRefGoogle Scholar
  14. 14.
    Pint BA, Hobbs LW (1994) Oxid Met 41:203CrossRefGoogle Scholar
  15. 15.
    Kottada RS, Chokshi AH (2000) Acta Mater 48:3905CrossRefGoogle Scholar
  16. 16.
    Bedu-Amissah K, Rickman JM, Chan HM et al (2007) J Am Ceram Soc 90:1551CrossRefGoogle Scholar
  17. 17.
    Cheng H, Dillon SJ, Caram HS et al (2008) J Am Ceram Soc 91:2002CrossRefGoogle Scholar
  18. 18.
    French JD, Zhao JH, Harmer MP et al (1994) J Am Ceram Soc 77:2857CrossRefGoogle Scholar
  19. 19.
    Matsunaga K, Nishimura H, Muto H et al (2003) Appl Phys Lett 82:1179CrossRefGoogle Scholar
  20. 20.
    Chokshi AH (1990) J Mater Sci 25:3221. doi: https://doi.org/10.1007/BF00587678 CrossRefGoogle Scholar
  21. 21.
    Heuer AH (2008) J Eur Ceram Soc 28:1495CrossRefGoogle Scholar
  22. 22.
    Veal BW, Paulikas AP, Hou PY (2007) Appl Phys Lett 90:121914CrossRefGoogle Scholar
  23. 23.
    Nakamura K, Mizolguchi T, Shibata N et al (2007) Phys Rev B 75:184109CrossRefGoogle Scholar
  24. 24.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  25. 25.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  26. 26.
    Kresse G, Hafner J (1993) Phys Rev B 48:13115CrossRefGoogle Scholar
  27. 27.
    Kresse G, Fürthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  28. 28.
    Kresse G, Fürthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  29. 29.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  30. 30.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Erzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  32. 32.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  33. 33.
    Hinnemann B, Carter EA (2007) J Phys Chem C 111:7105CrossRefGoogle Scholar
  34. 34.
    Milas I, Hinnemann B, Carter EA (2008) J Mater Res 23:1494CrossRefGoogle Scholar
  35. 35.
    Kenway PR (1994) J Am Ceram Soc 77:349CrossRefGoogle Scholar
  36. 36.
    Höche T, Kenway PR, Kleebe HJ et al (1994) J Am Ceram Soc 77:339CrossRefGoogle Scholar
  37. 37.
    Lide DR (ed) (1999) CRC handbook of chemistry and physics, 79th edn. CRC Press, Boca Raton, FloridaGoogle Scholar
  38. 38.
    Molteni C, Francis GP, Payne MC et al (1996) Phys Rev Lett 8:1284CrossRefGoogle Scholar
  39. 39.
    Voytovych R, MacLaren I, Gülgün MA et al (2002) Acta Mater 50:3453CrossRefGoogle Scholar
  40. 40.
    Wang CM, Cargill GSIII, Chan HM et al (2000) Acta Mater 48:2579CrossRefGoogle Scholar
  41. 41.
    Milas I, Hinnemann B, Carter EA, to be publishedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering and Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations