Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 700–707 | Cite as

Mechanical behavior of NiTi shape memory alloy fiber reinforced Sn matrix “smart” composites

  • J. P. Coughlin
  • J. J. Williams
  • N. ChawlaEmail author
Article

Abstract

The detrimental effects of Pb on the environment and human health have provided the driving force for replacement of Pb–Sn solders with Pb-free alternatives. Sn-rich Pb-free solder alloys with silver and copper alloying additions have higher strength but lower elongation-to-failure than Pb–Sn solders. Thus, these alloys are more susceptible to failure under mechanical shock, drop, and thermal fatigue conditions. In this article, mechanical tensile testing of NiTi–Sn3.5Ag single fiber composites demonstrates superelastic behavior of the composite with 85% strain recovery. Fatigue experiments show an evolution in damage over cycles, and an S–N curve shows sharp transition between a nearly vertical low-cycle fatigue behavior and the high-cycle fatigue regime. The solder composite exhibits constant fatigue strength over the superelastic range of the NiTi fiber.

Keywords

Fatigue Austenite Fatigue Life Solder Alloy Solder Composite 

Notes

Acknowledgements

The authors acknowledge financial support for this research from Intel Corporation (Dr. D. Suh, Dr. R. Mahajan, and Dr. V. Wakharkar). The authors also thank Gordon Moore from the Department of Chemistry and Biochemistry at Arizona State University for his help with the WDS, and the Memry Corporation for providing the NiTi fibers used in this study.

References

  1. 1.
    Kang S, Sarkhel AK (1994) J Electron Mater 23:701CrossRefGoogle Scholar
  2. 2.
    Frear DR, Vianco PT (1994) Metall Trans A 25:1509CrossRefGoogle Scholar
  3. 3.
    Glazer J (1995) Int Mater Rev 40:65CrossRefGoogle Scholar
  4. 4.
    Abtew M, Selvaduray G (2000) Mater Sci Eng R Rep 27:95CrossRefGoogle Scholar
  5. 5.
    Plumridge WJ (2005) Monatsh Chem 136:1811CrossRefGoogle Scholar
  6. 6.
    Vianco PT, Frear DR (1993) J Electron Mater 45:14Google Scholar
  7. 7.
    Choi S, Subramanian KN, Lucas JP, Bieler TR (2000) J Electron Mater 29:1249CrossRefGoogle Scholar
  8. 8.
    Terashima S, Yoshiharu K, Takuya H, Masamoto T (2003) J Electron Mater 32:1527CrossRefGoogle Scholar
  9. 9.
    Chawla N, Chawla KK (2006) Metal matrix composites. Springer Press, New YorkGoogle Scholar
  10. 10.
    Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  11. 11.
    Frick CP, Ortega AM, Tyber J, Maksound A, Maier HJ, Liu Y, Gall K (2005) Mater Sci Eng A 405:34CrossRefGoogle Scholar
  12. 12.
    Shimamoto A, Zhao HY, Abe H (2004) Int J Fatigue 26:533CrossRefGoogle Scholar
  13. 13.
    Vokoun D, Kafka V, Hu CT (2003) Smart Mater Struct 12:680CrossRefGoogle Scholar
  14. 14.
    Wagner M, Sawaguchi T, Kausträter G, Höffken D, Eggeler G (2004) Mater Sci Eng A 378:105CrossRefGoogle Scholar
  15. 15.
    Wang ZG, Zua XT, Fub YQ, Wang LM (2005) Thermochim Acta 428:199CrossRefGoogle Scholar
  16. 16.
    Young JM, Van Vliet KJ (2005) J Biomed Mater Res 72:17CrossRefGoogle Scholar
  17. 17.
    Zheng Y, Cui L, Schrooten J (2004) Appl Phys Lett 84:31CrossRefGoogle Scholar
  18. 18.
    Brinson LC, Schmidtb I, Lammering R (2004) J Mech Phys Solids 52:1549CrossRefGoogle Scholar
  19. 19.
    Liu JY, Lu H, Chen JM, Alain C, Wu T (2008) J Mater Sci 43:4921. doi: https://doi.org/10.1007/s10853-008-2716-9 CrossRefGoogle Scholar
  20. 20.
    Wei ZG, Sandstrom R, Miyazaki S (1998) J Mater Sci 33:3763. doi: https://doi.org/10.1023/A:1004674630156 CrossRefGoogle Scholar
  21. 21.
    Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK, Minay EJ (2006) J Mater Sci 41:8152. doi: https://doi.org/10.1007/s10853-006-0556-z CrossRefGoogle Scholar
  22. 22.
    Dutta I, Majumdar BS, Pan D, Horton WS, Wright W, Wang ZX (2004) J Electron Mater 33:258CrossRefGoogle Scholar
  23. 23.
    Wang ZX, Dutta I, Majumdar BS (2006) Scripta Mater 54:627CrossRefGoogle Scholar
  24. 24.
    Wang ZX, Dutta I, Majumdar BS (2006) Mater Sci Eng A 421:133CrossRefGoogle Scholar
  25. 25.
    Kelly A (1987) Strong solids. Clarendon Press, Oxford, p 157Google Scholar
  26. 26.
    Coughlin JP, Williams JJ, Crawford GA, Chawla N (2009) Metall Mater Trans A (in press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Materials, Fulton School of EngineeringArizona State UniversityTempeUSA

Personalised recommendations