Journal of Materials Science

, Volume 44, Issue 3, pp 861–868 | Cite as

Rutile thin film responsive to visible light and with high UV light sensitivity

  • Hiroki Nagai
  • Sohei Aoyama
  • Hiroki Hara
  • Chihiro Mochizuki
  • Ichiro Takano
  • Norio Baba
  • Mitsunobu Sato


A transparent rutile thin film 100 nm thick was fabricated on a quartz glass substrate; it was responsive to visible light and had a higher sensitivity to UV light than an anatase thin film formed by sol–gel method under identical conditions. The crystal structure was determined by observations using X-ray diffraction, Raman spectra, and a transmission electron microscope. The oxygen/titanium ratio of the rutile thin films was 1.78 according to the XPS peaks. The photoreactivity and photoinduced hydrophilicity of the rutile thin films was examined by measuring the pseudo first-order rate for the decoloration of methylene blue in an aqueous solution and the water contact angle, respectively. The high photoreactivity and photosensitivity of the O-deficient rutile thin film, whose optical band edge and refractive index were 3.10 eV and 2.2, respectively, were due to electron traps and assisted by O-defects within the rutile particles.


Rutile Methylene Blue Water Contact Angle Precursor Film Quartz Glass Substrate 



This study was supported by the High-Tech Research Center Project for Private Universities: Matching Fund Subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology) Japan, 2006–2010.


  1. 1.
    Weiser HB, Milligan WO (1934) J Phys Chem 38:513CrossRefGoogle Scholar
  2. 2.
    Evans RC (1966) An introduction to crystal chemistry, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  3. 3.
    Lindsley DH (1976) Experimental studies of oxide minerals. Mineral Society of AmericaGoogle Scholar
  4. 4.
    Fahmi A, Minot C, Silvi B, Causá M (1993) Phys Rev B 47:11717CrossRefGoogle Scholar
  5. 5.
    Nishimoto S, Ohtani B, Kajiwara H, Kagiya T (1985) J Chem Soc Faraday Trans 1 81:61CrossRefGoogle Scholar
  6. 6.
    Follis D, Pelizzetti E, Serpone N (1991) Environ Sci Technol 25:1523Google Scholar
  7. 7.
    Fox MA, Dulay MT (1993) Chem Rev 83:341CrossRefGoogle Scholar
  8. 8.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  9. 9.
    Nagai H, Mochizuki C, Hara H, Takano I, Sato M (2008) Sol Energy Mater Solar Cells 92:1136CrossRefGoogle Scholar
  10. 10.
    Nagai H, Hasegawa M, Hara H, Mochizuki C, Takano I, Sato M (2008) J Mater Sci 43(21):6902CrossRefGoogle Scholar
  11. 11.
    Cronemeyer DC (1952) Phys Rev 87:876CrossRefGoogle Scholar
  12. 12.
    Sato M, Hara H, Nishide T, Kuritani H, Sawada Y (1996) J Mater Chem 6:1767CrossRefGoogle Scholar
  13. 13.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, CaliforniaGoogle Scholar
  14. 14.
    Bruce DW, O’Hare D (1992) Inorganic materials. Wiley, ChichesterGoogle Scholar
  15. 15.
    Tanemura S, Miao L, Jin P, Kaneko K, Terai A, Nabatova GN (2003) Appl Surf Sci 212–213:654CrossRefGoogle Scholar
  16. 16.
    JCPDS Card 21-1276Google Scholar
  17. 17.
    JCPDS Card 21-1272Google Scholar
  18. 18.
    Ohtsuka T, Guo J, Sato N (1986) J Electrochem Soc 133:2473CrossRefGoogle Scholar
  19. 19.
    Moses PR, Wier LM, Lennox JC, Finklea HO, Lenhard JR, Murray RW (1978) Anal Chem 50:576CrossRefGoogle Scholar
  20. 20.
    Kwon CH, Shin H, Kim CH, Choi WS, Yoon KH (2004) Mater Chem Phys 86:78CrossRefGoogle Scholar
  21. 21.
    Ohno T, Tsubota T, Nishizima K, Miyamoto Z (2004) Chem Lett 33:750CrossRefGoogle Scholar
  22. 22.
    Wang R, Hashimoto K, Fujishima A et al (1997) Nature 388:431CrossRefGoogle Scholar
  23. 23.
    Watanabe T, Nakajima A, Wang R et al (1999) Thin Solid Films 351:260CrossRefGoogle Scholar
  24. 24.
    Machida M, Norimoto K, Watanabe T, Hashimoto K, Fujishima A (1999) J Mater Sci 34:2569. doi: CrossRefGoogle Scholar
  25. 25.
    Gennari FC, Pasquevich DM (1998) J Mater Sci 33:1571. doi: CrossRefGoogle Scholar
  26. 26.
    Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N, Tanemura S (2003) Appl Surf Sci 212–213:255. CrossRefGoogle Scholar
  27. 27.
    Nishide T, Hara H, Sato M (2000) J Mater Sci 35:465. CrossRefGoogle Scholar
  28. 28.
    Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  29. 29.
    Hill GJ (1968) J Appl Phys 1:1151Google Scholar
  30. 30.
    Ohmori A, Kyeung CP, Inuzuka M, Arata Y, Inoue K, Iwamoto N (1991) Thin Solid Films 201:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hiroki Nagai
    • 1
  • Sohei Aoyama
    • 1
  • Hiroki Hara
    • 1
  • Chihiro Mochizuki
    • 1
  • Ichiro Takano
    • 2
  • Norio Baba
    • 3
  • Mitsunobu Sato
    • 1
  1. 1.Coordination Engineering Laboratory, Faculty of EngineeringKogakuin UniversityHachioji CityJapan
  2. 2.Department of Electrical Engineering, Faculty of EngineeringKogakuin UniversityHachioji CityJapan
  3. 3.Department of Information Science, Faculty of InformaticsKogakuin UniversityHachioji CityJapan

Personalised recommendations