Journal of Materials Science

, Volume 44, Issue 3, pp 721–725 | Cite as

Effect of curing and pyrolysis processing on the ceramic yield of a highly branched polycarbosilane

  • Houbu LiEmail author
  • Litong Zhang
  • Laifei Cheng
  • Zhaoju Yu
  • Muhe Huang
  • Huibin Tu
  • Haiping Xia


In this article, the influence of curing processing on the final ceramic yield of a highly branched polycarbosilane is discussed. Effect of pyrolysis conditions on the ceramic residue is also investigated. The results show that post-treatment can highly increase the crosslinking degree and pyrolysis yield, but has little influence on the final ceramic yield. The heating rate between 170 and 200 °C shows a little effect on the ceramic residue. Adding the catalyst into polymer, pyrolysizing with the gas pressure and improving the heating rate during the pyrolysis process can efficiently increase the final ceramic yield.


Pyrolysis Polymer Precursor Lithium Aluminum Hydride Allyl Chloride Pyrolysis Condition 



The project was supported by the Natural Science Foundation of Fujian Province of China (No. E0510002).


  1. 1.
    Goto Y, Thomas G (1995) J Mater Sci 30:2194. doi: CrossRefGoogle Scholar
  2. 2.
    Yajima S, Hasegawa Y, Okamura K et al (1978) Nature 273:525CrossRefGoogle Scholar
  3. 3.
    Riedel R, Passing G, SchoÈnfelder H et al (1992) Nature 355:714CrossRefGoogle Scholar
  4. 4.
    Riedel R, Kienzle A, Dressler W et al (1996) Nature 382:796CrossRefGoogle Scholar
  5. 5.
    An L, Riedel R, Konetachny C et al (1998) J Am Ceram Soc 81:1349CrossRefGoogle Scholar
  6. 6.
    Riedel R, Ruwisch LM, An L et al (1998) J Am Ceram Soc 81:3341CrossRefGoogle Scholar
  7. 7.
    Wang Y, Fan Y, Zhang L et al (2005) J Am Ceram Soc 88:3075CrossRefGoogle Scholar
  8. 8.
    Wang Y, Fan Y, Zhang L et al (2006) Scr Mater 55:295CrossRefGoogle Scholar
  9. 9.
    Wang Y, Fei W, An L et al (2006) J Am Ceram Soc 89:1079CrossRefGoogle Scholar
  10. 10.
    Wang Y, Fei W, Fan Y et al (2006) J Mater Res 21:1625CrossRefGoogle Scholar
  11. 11.
    Gmelin L (1989) Gmelin handbook of inorganic chemistry, 8th edn. Silicon Supplier, Berlin; Springer-Verlag, New YorkGoogle Scholar
  12. 12.
    Birot M, Pillot JP, Dunogues J (1995) Chem Rev 95:1443CrossRefGoogle Scholar
  13. 13.
    Kroke E, Li Y, Konetschny C et al (2000) Mater Sci Eng R 26:97CrossRefGoogle Scholar
  14. 14.
    Seyferth D, Wiseman GH et al (1984) J Am Ceram Soc 67:C132Google Scholar
  15. 15.
    Lücke J, Hacker J, Suttor D et al (1997) Appl Organomet Chem 11:181CrossRefGoogle Scholar
  16. 16.
    Lavedrine A, Bahloul D, Goursat P et al (1991) J Eur Ceram Soc 8:221CrossRefGoogle Scholar
  17. 17.
    Bahloul D, Pereira M, Goursat P et al (1993) J Am Ceram Soc 76:1156CrossRefGoogle Scholar
  18. 18.
    Li HB, Zhang LT, Cheng LF et al (2008) J Mater Sci 43:2806. doi: CrossRefGoogle Scholar
  19. 19.
    Li HB, Zhang LT, Cheng LF et al (2008) J Eur Ceram Soc 28:887CrossRefGoogle Scholar
  20. 20.
    Huang TH, Yu ZJ, He XM et al (2007) Chin Chem Lett 18:754CrossRefGoogle Scholar
  21. 21.
    Choong Kwet Yive NS, Corriu RJP, Leclerq D et al (1992) Chem Mater 4:141CrossRefGoogle Scholar
  22. 22.
    Bischoff R, Cray SE (1999) Prog Polym Sci 24:185CrossRefGoogle Scholar
  23. 23.
    Sandeep RS, Rishi R (2002) Acta Mater 50:4093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Houbu Li
    • 1
    Email author
  • Litong Zhang
    • 1
  • Laifei Cheng
    • 1
  • Zhaoju Yu
    • 2
  • Muhe Huang
    • 2
  • Huibin Tu
    • 2
  • Haiping Xia
    • 2
  1. 1.National Key Laboratory of Thermostructure Composite MaterialsNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Materials Science, Advanced Materials Laboratory, Engineering College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations