Advertisement

Journal of Materials Science

, Volume 44, Issue 8, pp 2097–2100 | Cite as

Fabricated carbon from minimally processed coke and coal tar pitch as a carbon-sequestering construction material

  • Arman Wiratmoko
  • John W. HalloranEmail author
Article

Abstract

We report the mechanical fracture strength and physical properties of fabricated carbons made from pulverized metallurgical coke bonded with coal tar pitch, followed by pyrolysis. Tensile strength from diametral compression of discs ranged from 9.7 ± 1.3 MPa for materials bonded with 13 wt% pitch to 63 ± 7.1 MPa for materials bonded with 40 wt% pitch. Materials made by dry mixing pulverized pitch with coke were comparable with materials made by mixing coke powder with a solution of pitch in toluene. Strength increased with pyrolysis temperature. Pyrolyzed pitch-bonded coke was significantly stronger and lighter than ordinary Portland cement concrete.

Keywords

Coke Oven Petroleum Coke Indirect Tensile Strength Metallurgical Coke Coke Particle 

Notes

Acknowledgements

We thank Dr. Frank T. Jere of DTE Energy Systems for donating the coke. The University of Michigan through the A.H. White Collegiate Professorship funded this research.

References

  1. 1.
    Halloran JW (2007) Energy Policy 35:4839CrossRefGoogle Scholar
  2. 2.
    Halloran JW (2008) Int J Hydrogen Energy 33:2218CrossRefGoogle Scholar
  3. 3.
    Mindess S, Young JF (1981) Concrete. Prentice-Hall Publishers, New Jersey, p 339Google Scholar
  4. 4.
    Sundholm JL, Valia HS, Kiesling FJ, Richardson J, Buss WE, Worberg R, Schwarz U, Baer H, Claderon A, DiNitto RG (1999) Making shaping and treating of steel. AISI Foundation, Pittsburgh, PAGoogle Scholar
  5. 5.
    Ertem M, Ozdabak A (2005) Appl Therm Eng 25:423CrossRefGoogle Scholar
  6. 6.
    Petrova B, Budinova T, Eknici E, Petrov N, Yardim F (2007) Carbon 45:704CrossRefGoogle Scholar
  7. 7.
    Wallouch RW, Murty HN, Heintz EA (1972) Carbon 10:79CrossRefGoogle Scholar
  8. 8.
    Bhatia B, Aggarwal RK (1979) J Mater Sci 14:1103. doi: https://doi.org/10.1007/BF00561293 CrossRefGoogle Scholar
  9. 9.
    Fahad MK (1996) J Mater Sci 31:3723. doi: https://doi.org/10.1007/BF00352786 CrossRefGoogle Scholar
  10. 10.
    Sato H, Patrick JW, Walker A (1998) Fuel 77:1203CrossRefGoogle Scholar
  11. 11.
    Patrick JW, Walker A (1987) J Mater Sci 22:3589. doi: https://doi.org/10.1007/BF01161464 CrossRefGoogle Scholar
  12. 12.
    Patrick JW, Sims MJ, Stacey AE (1980) J Phys D Appl Phys 13:937CrossRefGoogle Scholar
  13. 13.
    Rashid MA, Mansur MA, Asce M, Paramasivam P (2002) J Mater Civ Eng May/June:230Google Scholar
  14. 14.
    Zain MF, Mahmud HB, Ilham A, Faizal M (2002) Cement Concrete Res 32:1251CrossRefGoogle Scholar
  15. 15.
    Robinson GC (1991) Engineered materials handbook vol 4: ceramics and glass. ASM International, Pittsburgh, PAGoogle Scholar
  16. 16.
    Herbig C, Jess A (2002) Fuel 81:2387CrossRefGoogle Scholar
  17. 17.
    Babrauskas V (2002) J Fire Prot Eng 12:163CrossRefGoogle Scholar
  18. 18.
    Lu W, Chung DDL (2002) Carbon 40:1249CrossRefGoogle Scholar
  19. 19.
    Wu XX, Radovic LR (2006) Carbon 44:141CrossRefGoogle Scholar
  20. 20.
    McKee DW, Spiro CL, Lamby EJ (1984) Carbon 22:507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations