Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 759–769 | Cite as

Novel precipitated silicas: an active filler of synthetic rubber

  • Teofil JesionowskiEmail author
  • Andrzej Krysztafkiewicz
  • Jolanta Żurawska
  • Karol Bula
Article

Abstract

Highly dispersed silicas have been obtained at a semi-technical scale by precipitation from sodium metasilicate solutions using appropriately diluted solutions of ammonium hydrogencarbonate or ammonium chloride. The difference, as compared to the generally applied technology of silica precipitation using acids or their anhydrides, has been the involvement of the precipitation reaction in alkaline media. Attempts have been made at changing the silica surface character from hydrophilic to more hydrophobic, using a modifier from the group of silane coupling agents. The alkoxysilanes modifiers contained groups with chemical affinity towards functional groups of butadiene–styrene rubber. Modification of silica surface using silane coupling agents has been found to improve the reinforcement of vulcanizates, by increasing the tensile and tear strength in particular.

Keywords

Silanol Group Silica Surface Vulcanization Silane Coupling Agent Weight Part 

Notes

Acknowledgements

This work was supported by the Ministry for Science and Higher Education research and development grant no. R08 034 01 (2006–2009).

References

  1. 1.
    Krysztafkiewicz A, Maik M, Rager B (1993) Powder Technol 75:29. doi: https://doi.org/10.1016/0032-5910(93)80022-3 CrossRefGoogle Scholar
  2. 2.
    Krysztafkiewicz A, Jesionowski T, Rager B (1997) J Adhes Sci Technol 11:507. doi: https://doi.org/10.1163/156856197X00057 CrossRefGoogle Scholar
  3. 3.
    Yatsuyanagi F, Suzuki N, Ito M, Kaidou H (2001) Polymer 42:9523. doi: https://doi.org/10.1016/S0032-3861(01)00472-4 CrossRefGoogle Scholar
  4. 4.
    Wang M (1998) Rubber Chem Technol 71:520CrossRefGoogle Scholar
  5. 5.
    Swaaij A (2003) Nat Rubber 23:19Google Scholar
  6. 6.
    Raghavan SR, Riley MW, Fedkiw PS, Khan SA (1998) Chem Mater 10:244. doi: cm970406jS0897-4756(97)00406-7CrossRefGoogle Scholar
  7. 7.
    Fukahari Y (2000) Rubber Chem Technol 76:548CrossRefGoogle Scholar
  8. 8.
    Suzuki N, Ito M, Ono S (2005) J Appl Polym Sci 95:74. doi: https://doi.org/10.1002/app.20800 CrossRefGoogle Scholar
  9. 9.
    Rajeev RS, De SK (2002) Rubber Chem Technol 75:475CrossRefGoogle Scholar
  10. 10.
    Donnet JB (1998) Rubber Chem Technol 71:323CrossRefGoogle Scholar
  11. 11.
    Niedermeier W, Froehlich J, Luginsland HD (2002) Kautsch Gummi Kunstst 55:356Google Scholar
  12. 12.
    Zaborski M, Paryjczak T, Kaźmierczak A, Albińska J (2002) Polimery 47:95CrossRefGoogle Scholar
  13. 13.
    Zaborski M, Paryjczak T, Kaźmierczak A, Albińska J (2002) Polimery 47:201CrossRefGoogle Scholar
  14. 14.
    Zaborski M, Pietrasik J (2002) Polimery 47:643CrossRefGoogle Scholar
  15. 15.
    Kosmalska A, Zaborski M, Ślusarski L (2003) Macromol Symp 194:269. doi: https://doi.org/10.1002/masy.200390092 CrossRefGoogle Scholar
  16. 16.
    Jesionowski T, Krysztafkiewicz A (2001) Compos Interfaces 8:243. doi: https://doi.org/10.1163/15685540152594712 CrossRefGoogle Scholar
  17. 17.
    Jesionowski T, Krysztafkiewicz A (2001) Compos Interfaces 8:221. doi: https://doi.org/10.1163/15685540152594686 CrossRefGoogle Scholar
  18. 18.
    Tse MF, Tsou AH, Lyon MK (2003) Rubber World 228:30Google Scholar
  19. 19.
    Nieuwenhuizen PJ, Reedijk J, van Duin M, McGill WJ (1997) Rubber Chem Technol 70:368CrossRefGoogle Scholar
  20. 20.
    Jesionowski T, Żurawska J, Krysztafkiewicz A (2002) J Mater Sci 37:1621. doi: https://doi.org/10.1023/A:1014936428636 CrossRefGoogle Scholar
  21. 21.
    Kimura M, Kataoka S, Tsutsumi K (2000) Colloid Polym Sci 278:848. doi: https://doi.org/10.1007/s003960000332 CrossRefGoogle Scholar
  22. 22.
    Aso O, Eguiazábal JI, Nazábal J (2007) Compos Sci Technol 67:2854. doi: https://doi.org/10.1016/j.compscitech.2007.01.021 CrossRefGoogle Scholar
  23. 23.
    Teh PL, Mariatti M, Akil HM, Yeoh CK, Seetharamu KN, Wagiman ANR, Beh KS (2007) Mater Lett 61:2156. doi: https://doi.org/10.1016/j.matlet.2006.08.036 CrossRefGoogle Scholar
  24. 24.
    Kang S, Hong SI, Choe ChR, Park M, Rim S, Kim J (2001) Polymer 42:879. doi: https://doi.org/10.1016/S0032-3861(00)00392-X CrossRefGoogle Scholar
  25. 25.
    Bourgeat-Lami E, Espiard Ph, Guyot A (1995) Polymer 36:4385. doi: https://doi.org/10.1016/0032-3861(95)96843-W CrossRefGoogle Scholar
  26. 26.
    Espiard P, Guyot A (1995) Polymer 36:4391. doi: https://doi.org/10.1016/0032-3861(95)96844-X CrossRefGoogle Scholar
  27. 27.
    Espiard Ph, Guyot A, Perez J, Vigier G, David L (1995) Polymer 36:4397. doi: https://doi.org/10.1016/0032-3861(95)96845-Y CrossRefGoogle Scholar
  28. 28.
    Luna-Xavier J-L, Guyot A, Bourgeat-Lami E (2002) J Colloid Interface Sci 250:82. doi: https://doi.org/10.1006/jcis.2002.8310 CrossRefGoogle Scholar
  29. 29.
    Jesionowski T, Krysztafkiewicz A (2000) J Non-Cryst Solids 277:45. doi: https://doi.org/10.1016/S0022-3093(00)00299-4 CrossRefGoogle Scholar
  30. 30.
    Berendsen GE, de Golan J (1978) Liq Chromatogr 1:651Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Teofil Jesionowski
    • 1
    Email author
  • Andrzej Krysztafkiewicz
    • 1
  • Jolanta Żurawska
    • 1
  • Karol Bula
    • 2
  1. 1.Institute of Chemical Technology and EngineeringPoznan University of TechnologyPoznanPoland
  2. 2.Institute of Materials TechnologyPoznan University of TechnologyPoznanPoland

Personalised recommendations