Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1485–1493 | Cite as

Compressive and ultrasonic properties of polyester/fly ash composites

  • Pradeep K. Rohatgi
  • Takuya Matsunaga
  • Nikhil GuptaEmail author
Syntactic and Composite Foams

Abstract

The addition of hollow fillers having appropriate mechanical properties can decrease the density of the resulting composite, called syntactic foams, while concurrently improving its mechanical properties. In this study, hollow fly ash particles, called cenospheres, are used as fillers in polyester matrix material. Cenospheres are a waste by-product of coal combustion and, as such, are available at very low cost. In this study, the composites were synthesized by settling cenospheres in a glass tube filled with liquid polyester resin and subsequently curing the resin. This process resulted in a functionally graded structure containing a gradient in the cenosphere volume fraction along the sample height. Uniform radial sections were cut from each composite and were characterized to observe the relationship between cenosphere volume fraction and compressive properties of the composite. The composite was also tested using ultrasonic non-destructive evaluation method. Results show that the modulus of the composites increases with increasing cenosphere volume fraction. The modulus of composites containing more than 4.9 vol% cenosphere was found to be higher than the matrix resin. In general, the modulus of composites increased from 1.33 to 2.1 GPa for composites containing from 4.9–29.5 vol% cenospheres. The specific strength of the composite was found to be as high as 2.03 MPa/(kg/m3) compared to 0.96 MPa/(kg/m3) for the neat resin. Numerous defects present in fly ash particles caused a reduction in the strength of the composite. However, the reduction in the strength was found to be only up to 22%. Increase of over 110% in the specific modulus and only a slight decrease in the strength indicates the possibility of significant saving of weight in the structures using polyester/fly ash syntactic foams.

Keywords

Shear Wave Velocity Polyester Resin Increase Volume Fraction Syntactic Foam Hollow Particle 

Notes

Acknowledgements

The authors acknowledge the support from the National Science Foundation through the grant #CMMI0726723. The authors thank Benjamin F. Schultz and Robert McSweeney for their constructive feedback and the help in the article preparation.

References

  1. 1.
    Rothon RN (2003) Particulate-filled polymer composites. Smithers Rapra TechnologyGoogle Scholar
  2. 2.
    Katz HS, Milewski JV (1987) Handbook of fillers for plastics. Von Nostrand Reinhold, New YorkGoogle Scholar
  3. 3.
    Ku H, Chan WL, Trada M, Baddeley D (2007) J Mater Eng Perform 16:741CrossRefGoogle Scholar
  4. 4.
    Narkis M, Puterman M, Kenig S (1980) J Cell Plast 16:326CrossRefGoogle Scholar
  5. 5.
    Bienia J, Walczak M, Surowska B, Sobczak J (2003) J Optoelectron Adv Mater 5:493Google Scholar
  6. 6.
    Kiser M, He MY, Zok FW (1999) Acta Mater 47:2685CrossRefGoogle Scholar
  7. 7.
    Gupta N, Brar BS, Woldesenbet E (2001) Bull Mater Sci 24:219CrossRefGoogle Scholar
  8. 8.
    Kim B, Prezzi M (2008) Waste Manag 28:649CrossRefGoogle Scholar
  9. 9.
    Kutchko BG, Kim AG (2006) Fuel 85:2537CrossRefGoogle Scholar
  10. 10.
    Vassilev SV, Vassileva CG, Karayigit AI, Bulut Y, Alastuey A, Querol X (2005) Int J Coal Geol 61:65CrossRefGoogle Scholar
  11. 11.
    Erol M, Kucukbayrak S, Ersoy-Mericboyu A (2007) Fuel 86:706CrossRefGoogle Scholar
  12. 12.
    Matsunaga T, Kim JK, Hardcastle S, Rohatgi PK (2002) Mater Sci Eng A 325:333CrossRefGoogle Scholar
  13. 13.
    Varughese KT, Chaturvedi BK (1996) Cement Concr Compos 18:105CrossRefGoogle Scholar
  14. 14.
    Yilmaz B, Olgun A (2008) Cement Concr Compos 30:194CrossRefGoogle Scholar
  15. 15.
    Rohatgi PK, Guo RQ, Keshavaram BN (1995) Key Eng Mater 104–107:283CrossRefGoogle Scholar
  16. 16.
    Rohatgi PK, Kim JK, Gupta N, Alaraj S, Daoud A (2006) Composites Part A 37:430CrossRefGoogle Scholar
  17. 17.
    Daoud A, Abou El-khair MT, Abdel-Aziz M, Rohatgi P (2007) Compos Sci Technol 67:1842CrossRefGoogle Scholar
  18. 18.
    Shen ZG, Wang MZ, Ma SL, Xing YS (2001) Zhongguo Suliao/China Plast 15:32Google Scholar
  19. 19.
    Liang JZ, Li FH (2006) Polym Test 25:527CrossRefGoogle Scholar
  20. 20.
    Liang JZ (2007) J Mater Sci 42:841. doi: https://doi.org/10.1007/s10853-006-0074-z CrossRefGoogle Scholar
  21. 21.
    Kishore, Kulkarni SM, Sunil D, Sharathchandra S (2002) Polym Int 51:1378CrossRefGoogle Scholar
  22. 22.
    Kulkarni SM, Kishore (2002) J Appl Polym Sci 84:2404CrossRefGoogle Scholar
  23. 23.
    Kishore, Kulkarni SM, Sharathchandra S, Sunil D (2002) Polym Test 21:763CrossRefGoogle Scholar
  24. 24.
    Porfiri M, Gupta N (2008) Composites Part B, under reviewGoogle Scholar
  25. 25.
    Bardella L, Genna F (2001) Int J Solids Struct 38:7235CrossRefGoogle Scholar
  26. 26.
    C693-93(2003) (2003) Standard test method for density of glass by buoyancy. ASTM International, West Conshohocken, PA, USAGoogle Scholar
  27. 27.
    D695-02a (2002) Standard test method for compressive properties of rigid plastics. ASTM International, West Conshohocken, PA, USAGoogle Scholar
  28. 28.
    Krautkramer J, Krautkramer H (1990) Ultrasonic testing of materials. Springer-Verlag, NYCrossRefGoogle Scholar
  29. 29.
    Bikales NM (1971) Adhesion and bonding. John Wiley and Sons, New YorkGoogle Scholar
  30. 30.
    Kerner EH (1956) Proc Phys Soc B 69:808CrossRefGoogle Scholar
  31. 31.
    Bunn P, Mottram JT (1993) Composites 24:565CrossRefGoogle Scholar
  32. 32.
    Gupta N, Kishore, Woldesenbet E, Sankaran S (2001) J Mater Sci 36:4485. doi: https://doi.org/10.1023/A:1017986820603 CrossRefGoogle Scholar
  33. 33.
    Jeong H, Hsu DK, Shannon RE, Liaw PK (1994) Metall Mater Trans A 25A:799CrossRefGoogle Scholar
  34. 34.
    Tagliavia G, Porfiri M, Gupta N (2008) J Compos Mater (in press). doi: https://doi.org/10.1177/0021998308097683 CrossRefGoogle Scholar
  35. 35.
    Koopman M, Gouadec G, Carlisle K, Chawla KK, Gladysz G (2004) Scripta Mater 50:593CrossRefGoogle Scholar
  36. 36.
    Christensen RM (2005) Mechanics of composite materials. Dover Publications, NYGoogle Scholar
  37. 37.
    Carlisle KB, Lewis M, Chawla KK, Koopman M, Gladysz GM (2007) Acta Mater 55:2301CrossRefGoogle Scholar
  38. 38.
    Gupta N, Woldesenbet E (2004) J Cell Plast 40:461CrossRefGoogle Scholar
  39. 39.
    Leidner J, Woodhams RT (1974) J Appl Polym Sci 18:1639CrossRefGoogle Scholar
  40. 40.
    Koopman M, Chawla K, Carlisle K, Gladysz G (2006) J Mater Sci 41:4009. doi: https://doi.org/10.1007/s10853-006-7601-9 CrossRefGoogle Scholar
  41. 41.
    Li JX, Silverstein M, Hiltner A, Baer E (1994) J Appl Polym Sci 52:255CrossRefGoogle Scholar
  42. 42.
    Mylavarapu P, Woldesenbet E (2008) J Cell Plast 44:203CrossRefGoogle Scholar
  43. 43.
    Woldesenbet E, Gupta N, Jadhav A (2005) J Mater Sci 40:4009. doi: https://doi.org/10.1007/s10853-005-1910-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pradeep K. Rohatgi
    • 1
  • Takuya Matsunaga
    • 1
  • Nikhil Gupta
    • 2
    Email author
  1. 1.Materials Engineering DepartmentUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Composite Materials and Mechanics Laboratory, Mechanical and Aerospace Engineering DepartmentPolytechnic Institute of New York UniversityBrooklynUSA

Personalised recommendations