Journal of Materials Science

, Volume 44, Issue 6, pp 1560–1571 | Cite as

Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials

  • Nguyen Quang Nguyen
  • Nikhil GuptaEmail author
  • Tindaro Ioppolo
  • M. Volkan Ötügen
Syntactic and Composite Foams


Development of smart materials with inherent damage sensing capabilities is of great interest to aerospace and other structural applications. Most of the existing smart materials are based on using embedded sensors for structural health monitoring. However, embedded sensors can lead to undesirable effects such as stress concentration and can cause premature failure. Therefore, using microstructural components for additional function of sensing of the structural health is the only option. Such possibilities exist only in selected few materials. The present study investigates the feasibility of developing fiber- and particle-reinforced composites into smart materials. The sensing approach considered is based on the morphology-dependent shifts of optical modes, referred to as the whispering gallery modes (WGMs), of spherical dielectric micro-particles. The WGMs are excited by coupling light from a tunable diode laser using single mode fibers. The WGMs of the micro-particles can be observed as sharp dips in the transmission spectrum through the fiber and are highly sensitive to the morphology of the particle. A minute change in the size, shape, or refractive index causes a shift of the optical modes, which can be interpreted quantitatively in terms of the parameter that caused the change. A theoretical framework is developed for such sensor systems that provides quantitative relations between the stress applied on the micro-particles and corresponding shift in WGMs. These relations are validated against the available experimental results.


PMMA Finite Element Analysis Fiber Bragg Grating Structural Health Monitoring Transverse Electric 



This research work is supported by the National Science Foundation grant #CBET-0619193.


  1. 1.
    Morey WW (1990) Distributed fiber grating sensors. In: Proceedings of international conference on optical fiber sensors, Sydney, pp 285–288Google Scholar
  2. 2.
    Melle SM, Liu K, Measures R (1991) Strain sensing using a fiber optical Bragg grating. In: Claus RO, Udd E (eds) Proceedings of fiber optic smart structures and skins IV, SPIE, vol 1588, Boston, MA, 5 Sept 1991Google Scholar
  3. 3.
    Foote PD (1994) Fiber Bragg grating strain sensors for aerospace smart structures. In: McDonach A, Gardiner PT, McEwen RS, Culshaw B (eds) Proceedings of 2nd European conference on smart structures and materials, SPIE, vol 2361, Glasgow, UK, 12 Oct 1995Google Scholar
  4. 4.
    Kim KS, Ismailm Y, Springer GS (1993) J Compos Mater 27:1663CrossRefGoogle Scholar
  5. 5.
    Habel WR, Hofmann D (1994) Strain measurements in reinforced concrete wall during the hydration reaction by means of embedded fiber interferometers. In: McDonach A, Gardiner PT, McEwen RS, Culshaw B (eds) Proceedings of 2nd European conference on smart structures and materials, SPIE, vol 2361, Glasgow, UK, 12 Oct 1995Google Scholar
  6. 6.
    Rashleigh SC (1983) Polarimetric sensors: exploiting the axial stress in high birefringence fibers. In: Proceedings of 1st international conference on optical fiber sensors, IEE, London, pp 210–213Google Scholar
  7. 7.
    Jackson DA (1985) J Phys E18:981Google Scholar
  8. 8.
    Inandi D, Elamar A, Vurpillot S (1994) Low coherence interferometry for the monitoring of civil engineering structures. In: McDonach A, Gardiner PT, McEwen RS, Culshaw B (eds) Proceedings of 2nd European conference on smart structures and materials, SPIE, vol 2361, Glasgow, UK, 12 Oct 1995Google Scholar
  9. 9.
    Maharsia R, Gupta N, Jerro HD, Peck JA (2003) Evaluation of change in mechanical properties due to the incorporation of optical fiber sensors in glass fiber reinforced composite pipes. In: Proceedings of American society for composites 18th annual conference, Paper #125, Gainesville, 19–22 Oct 2003Google Scholar
  10. 10.
    de Olivera R, Ramos CA, Marques AT (2007) Compu Struct. doi: CrossRefGoogle Scholar
  11. 11.
    Liu G, Chuang SL (1998) Sens Actuators A 69:143CrossRefGoogle Scholar
  12. 12.
    Wang Q, Grattan KTV, Palmer AW (1998) Sens Actuators A 71:179CrossRefGoogle Scholar
  13. 13.
    Matsko AB, Savchenkov AA, Strekalov D et al (2005) Review of application of whispering-gallery mode resonators in photonics and nonlinear optics. IPN progress report 42–162.
  14. 14.
    Guan G, Arnold S, Ötügen VM (2006) AIAA 44:2385CrossRefGoogle Scholar
  15. 15.
    Das N, Ioppolo T, Ötügen V (2007) Investigation of a micro-optical concentration sensor concept based on whispering gallery mode resonators. Presented at the 45th AIAA aerospace sciences meeting and exhibition, Reno, 8–11 Jan 2007Google Scholar
  16. 16.
    Ioppolo T, Ötügen V (2007) J Opt Soc Am B 24:2721–2726CrossRefGoogle Scholar
  17. 17.
    Laine JP, Tapalian C, Little B, Haus H (2001) Sens Actuators A 93:1CrossRefGoogle Scholar
  18. 18.
    Kozhevnikov M, Ioppolo T, Stepaniuk V et al (2006) Optical force sensor based on whispering gallery modes resonators. AIAA-2006-649, Reno, 9–12 Jan 2006Google Scholar
  19. 19.
    Ioppolo T, Kozhevnikov M, Stepaniuk V, Ötügen VM, Sheverev V (2008) Appl Opt 47:3009CrossRefGoogle Scholar
  20. 20.
    Gupta N, Woldesenbet E, Kishore (2002) J Mater Sci 37:3199. doi: CrossRefGoogle Scholar
  21. 21.
    Briscoe BJ, Liu KK, Williams DR (1997) J Colloid Interface Sci 200:256CrossRefGoogle Scholar
  22. 22.
    Sternberg E, Rosenthal F (1952) J Appl Mech 19:413Google Scholar
  23. 23.
    Hiramatsu Y, Oka Y (1966) Int J Rock Mech Min Sci 3:89CrossRefGoogle Scholar
  24. 24.
    Chau KT, Wei XX, Wong RHC et al (2000) Mech Mater 32:543CrossRefGoogle Scholar
  25. 25.
    Chau KT, Wei XX (1999) Int J Solids Struct 36:4437Google Scholar
  26. 26.
    Wu SZ, Chau KT (2006) Mech Mater 38:1039CrossRefGoogle Scholar
  27. 27.
    Kienzler R, Schmitt W (1990) Powder Technol 61:29CrossRefGoogle Scholar
  28. 28.
    Carlisle KB, Lewis M, Chawla KK et al (2007) Acta Mater 55:2301CrossRefGoogle Scholar
  29. 29.
    Timoshenko SP, Goodier JN (1973) Theory of elasticity, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    Chapra SC, Canale RP (2005) Numerical methods for engineers, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  31. 31.
    Belluard Y, Columb T, Depeursinge C et al (2006) Opt Express 14:8360CrossRefGoogle Scholar
  32. 32.
    Rudd JF, Gurnee EF (1957) J Appl Phys 28:1096CrossRefGoogle Scholar
  33. 33.
    Ay F, Kocabas A, Kocabas C et al (2004) J Appl Phys 96:7147CrossRefGoogle Scholar
  34. 34.
    Primak W, Post D (1959) J Appl Phys 30:779CrossRefGoogle Scholar
  35. 35.
    Gupta N, Kishore, Woldesenbet E et al (2001) J Mater Sci 36:4485. doi: CrossRefGoogle Scholar
  36. 36.
    Gupta N, Woldesenbet E, Mensah P (2004) Compos Part A 35:103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nguyen Quang Nguyen
    • 1
  • Nikhil Gupta
    • 1
    Email author
  • Tindaro Ioppolo
    • 2
  • M. Volkan Ötügen
    • 2
  1. 1.Composite Materials and Mechanics Laboratory, Mechanical and Aerospace Engineering DepartmentPolytechnic Institute of New York UniversityBrooklynUSA
  2. 2.Micro-Sensors Laboratory, Mechanical Engineering DepartmentSouthern Methodist UniversityDallasUSA

Personalised recommendations