Journal of Materials Science

, Volume 44, Issue 3, pp 754–758 | Cite as

Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles

  • Kai Sun
  • Jingxia Qiu
  • Jiwei Liu
  • Yuqing Miao


In this study, well-dispersed gold nanoparticles were prepared by the reduction of HAuCl4 in sodium bis(2-ethylhexyl)sulfosuccinate/isooctane reverse micelles system using ascorbic acid as reducing agent. The properties of the obtained nanoparticles were characterized with transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and UV–vis absorption spectrophotometer. Due to its high water solubility, biodegradability, and low toxicity, ascorbic acid could be used as a benign naturally available reducing agent to synthesize gold nanoparticles.


Ascorbic Acid Gold Nanoparticles HAuCl4 Gluconic Acid Water Pool 


  1. 1.
    Yang GJ, Qu XL, Shen M, Wang CY, Qu QS, Hu XY (2007) Sens Actuator B Chem 128:258CrossRefGoogle Scholar
  2. 2.
    Chiang CL (2001) J Colloid Inter Sci 239:334CrossRefGoogle Scholar
  3. 3.
    Xu J, Han X, Liu HL, Hu Y (2006) Colloids Surf A Physicochem Eng Asp 273:179CrossRefGoogle Scholar
  4. 4.
    Dong SA, Zhou SP (2007) Mater Sci Eng B Solid 140:153CrossRefGoogle Scholar
  5. 5.
    Jiang GH, Wang L, Chen WX (2007) Mater Lett 61:278CrossRefGoogle Scholar
  6. 6.
    Huang YP, Yang Y, Chen Z, Li X, Nogami M (2008) J Mater Sci 43:5390. doi: CrossRefGoogle Scholar
  7. 7.
    Saffi J, Sonego L, Varela QD, Salvador M (2006) Redox Rep 11:179CrossRefGoogle Scholar
  8. 8.
    Nadagouda MN, Varma RS (2007) Cryst Growth Des 7:2582CrossRefGoogle Scholar
  9. 9.
    Pal A, Shah S, Devi S (2007) Colloids Surf A Physicochem Eng Asp 302:483CrossRefGoogle Scholar
  10. 10.
    Chiang CL, Hsu MB, Lai LB (2004) J Solid State Chem 177:3891CrossRefGoogle Scholar
  11. 11.
    Dai JT, Du YK, Wang FW, Yang P (2007) Physica E 39:271CrossRefGoogle Scholar
  12. 12.
    Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) J Mater Sci 43:5115. doi: CrossRefGoogle Scholar
  13. 13.
    Moniruzzaman M, Hayashi Y, Talukder MMR, Saito E, Kawanishi T (2006) Biochem Eng J 30:237CrossRefGoogle Scholar
  14. 14.
    Castro TDC, Rodriguez EL, Arenas ZM, Ortega MMC, Tanori J (2007) Compos A 38:107CrossRefGoogle Scholar
  15. 15.
    Lin J, Zhou WL, O’Connor CJ (2001) Mater Lett 49:282CrossRefGoogle Scholar
  16. 16.
    Hu JD, Li YX, Zhou XZ, Cai MX (2007) Mater Lett 61:4989CrossRefGoogle Scholar
  17. 17.
    Sun XP, Luo YL (2006) Mater Lett 60:3145CrossRefGoogle Scholar
  18. 18.
    Li HH, Liu CY, Li KW, Wang H (2008) J Mater Sci 43:7026. doi: CrossRefGoogle Scholar
  19. 19.
    Shen M, Du YK, Rong HL, Li JR, Jiang L (2005) Colloids Surf A Physicochem Eng Asp 258:439CrossRefGoogle Scholar
  20. 20.
    Wong B, Yoda S, Howdle SM (2007) J Supercrit Fluid 42:282CrossRefGoogle Scholar
  21. 21.
    Xie YW, Ye RQ, Liu HL (2006) Colloids Surf A Physicochem Eng Asp 279:175CrossRefGoogle Scholar
  22. 22.
    Mandal M, Kundu S, Ghosh SK, Pal T (2002) Bull Mater Sci 25:509CrossRefGoogle Scholar
  23. 23.
    Mohapatra S, Pramanik N, Mukherjee S, Ghosh SK, Pramanik P (2007) J Mater Sci 42:7566. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life ScienceZhejiang Normal UniversityJinhuaChina

Personalised recommendations