Advertisement

Mechanical properties and strain fatigue lives of insulation polymers

  • Shing-Chung Wong
  • Sunil Bandaru
Article

Abstract

Insulation polymers are not well characterized for their mechanical properties particularly in terms of fatigue strains. This article aims to examine the durability and strain fatigue lives of three commonly used cable insulation polymers, viz., (1) polyvinyl chloride (PVC), (2) crosslinked polyethylene (XLPE), and (3) polyphenylene ether (PPE) under selected strain and temperature ranges. The tensile properties of these materials were measured using an Instron testing machine at constant and controlled loading rates. Fatigue tests were performed at three selected temperatures, −40, 25, and 65 °C, to characterize the temperature effects on fatigue life. From the tensile test results, it was observed that PVC and XLPE are ductile and exhibit significantly more elongation prior to breaking, while PPE exhibits brittle behavior. When the loading rate is increased, there is an improvement in the tensile strength of PPE and elastic modulus of PPE and PVC. The durability of XLPE under strain fatigue testing was the largest, followed by PVC and PPE. The strain fatigue lives of PVC and XLPE decreased drastically at −40 °C and demonstrated a noted increase at 65 °C compared to fatigue lives at room temperature. This trend was not observed in PPE where the strain fatigue life showed improvement at both lower and higher temperatures.

Keywords

Fatigue Fatigue Life Dynamic Mechanical Analysis True Strain Volumetric Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

SCW thanks the ASEE Summer Faculty Program and R. Andrew McGill at the U.S. Naval Research Laboratory.

References

  1. 1.
    Ng FM, Ritchie JM, Simmons JEL, Dewar RG (2000) J Mater Process Technol 107:37CrossRefGoogle Scholar
  2. 2.
    Akovali G, Bernardo CA, Leidner J, Leszek AU, Xanthos M (eds) (1998) Frontiers in the science and technology of polymer recycling. Kluwer Academic Publishers, DordrechtGoogle Scholar
  3. 3.
    Brandrup J, Bittner M, Michaeli W, Menges G (eds) (1996) Recycling and recovery of plastics. Hanser Gardner PublicationsGoogle Scholar
  4. 4.
    Brebu M, Vasile C, Antonie SR, Chiriac M, Precup M, Yang J, Roy C (2000) Polym Degrad Stabil 67:209CrossRefGoogle Scholar
  5. 5.
    Emanuelsson V, Simonson M, Gevert T (2007) Fire Mater 31:311CrossRefGoogle Scholar
  6. 6.
    Kim C, Jin Z, Jiang P, Zhu Z, Wang G (2006) Polym Test 25:553CrossRefGoogle Scholar
  7. 7.
    Kim C, Jin Z, Huang X, Jiang P, Ke Q (2007) Polym Degrad Stabil 92:537CrossRefGoogle Scholar
  8. 8.
    Kobayashi K, Nakayama S, Niwa T (1994) Proceedings of the fourth international conference on properties and applications of dielectric materials, p 678Google Scholar
  9. 9.
    Kujirai T, Akagira T (1925) Sci Pap Inst Phys Chem Res 2:223Google Scholar
  10. 10.
    Mazzanti G, Montanari GC, Simoni L (1997) IEEE Electric Insulat Mag 13:24CrossRefGoogle Scholar
  11. 11.
    Takeda K, Amemiya F, Kinoshita M, Takayama S (1997) J Appl Polym Sci 64:1175CrossRefGoogle Scholar
  12. 12.
    Benes M, Placek V, Matuschek G, Kettrup A, Gyoryova K, Balek V (2006) J Appl Polym Sci 99:788CrossRefGoogle Scholar
  13. 13.
    Chen N, Wan C, Zhang Y, Zhang Y (2004) Polym Test 23:169CrossRefGoogle Scholar
  14. 14.
    Pita VJRR, Sampaio EEM, Monteiro EEC (2002) Polym Test 21:545CrossRefGoogle Scholar
  15. 15.
    Wang Y, Cheng S, Li W, Huang C, Li F, Shi J (2007) Polym Bull 59:391CrossRefGoogle Scholar
  16. 16.
    Kubo K, Masamoto J (2002) J Appl Polym Sci 86:3030CrossRefGoogle Scholar
  17. 17.
    Hay AS, Blanchard HS, Endres GF, Eustance JW (1959) J Am Chem Soc 81:6335CrossRefGoogle Scholar
  18. 18.
    Hay AS (1967) Adv Polym Sci 4:496CrossRefGoogle Scholar
  19. 19.
    White DM, Klopfer HJ (1972) J Polym Sci A 1(10):1565Google Scholar
  20. 20.
    Kleiner LW, Karasz FE, Macknight W (1979) J Polym Eng Sci 19:519CrossRefGoogle Scholar
  21. 21.
    Gang H, Lining Y, Hongxin C (1999) Appl Eng Plast 12:19Google Scholar
  22. 22.
    Heijboer J (1968) J Polym Sci C 16:37Google Scholar
  23. 23.
    Karasz FE, O’Reilly JM (1965) Polym Lett 3:561CrossRefGoogle Scholar
  24. 24.
    Jachowicz J (1978) J Appl Polym Sci 22:2891CrossRefGoogle Scholar
  25. 25.
    Chandra R (1982) Prog Polym Sci 8:469CrossRefGoogle Scholar
  26. 26.
    Caddell RM, Bates T, Yeh G (1972) Mater Sci Eng 9:223CrossRefGoogle Scholar
  27. 27.
    Sweeney J, Caton-Rose P, Coates PD (2002) Polymer 43:899CrossRefGoogle Scholar
  28. 28.
    Sweeney J, Caton-Rose P, Coates PD, Unwin AP, Duckett RA, Ward IM (2002) Int J Plast 18:399zbMATHCrossRefGoogle Scholar
  29. 29.
    Parsons EM, Boyce MC, Parks DM, Weinberg M (2005) Polymer 46:2257CrossRefGoogle Scholar
  30. 30.
    Dasari A, Misra RDK (2003) Mater Sci Eng 358:356CrossRefGoogle Scholar
  31. 31.
    G’Sell C, Jonas JJ (1979) J Mater Sci 14:583. doi: 10.1007/BF00772717 Google Scholar
  32. 32.
    G’Sell C, Hiver JM, Dahoun A, Souahi A (1992) J Mater Sci 27:5031. doi: 10.1007/BF01105270 CrossRefADSGoogle Scholar
  33. 33.
    G’Sell C, Hiver JM, Dahoun A (2002) Int J Solids Struct 39:3857CrossRefGoogle Scholar
  34. 34.
    Buisson G, Ravi-Chandar K (1990) Polymer 31:2071CrossRefGoogle Scholar
  35. 35.
    Parsons EM, Boyce MC, Parks DM (2004) Polymer 45:2665CrossRefGoogle Scholar
  36. 36.
    Fang QZ, Wang TJ, Li HM (2006) Polymer 47:5174CrossRefGoogle Scholar
  37. 37.
    Xiao X (2008) Polym Test 27:284CrossRefGoogle Scholar
  38. 38.
    Kurtz SM, Pruitt L, Jewet CW, Crawford RP, Crane DJ, Edidin AA (1998) Biomaterials 19:1989PubMedCrossRefGoogle Scholar
  39. 39.
    Kausch HH, Gensler R, Grein CH, Plummer CJG, Scaramuzzino P (1999) J Macromol Sci Phys B 38:803CrossRefGoogle Scholar
  40. 40.
    Inagaki K, Ekh J, Zahrai S (2007) Int J Solids Struct 44:1657zbMATHCrossRefGoogle Scholar
  41. 41.
    Nair SV, Wong SC, Goettler LA (1997) J Mater Sci 32:5335. doi: 10.1023/A:1018618912039 CrossRefGoogle Scholar
  42. 42.
    Dean G, Read B (2001) Polym Test 20:677CrossRefGoogle Scholar
  43. 43.
    Rees DWA (2000) Mechanics of solids and structures. Imperial College Press, LondonzbMATHGoogle Scholar
  44. 44.
    Kang KW, Goo BC, Kim JH, Kim HS, Kim JK (2007) Key Eng Mater 353–358:142CrossRefGoogle Scholar
  45. 45.
    Ivanov SS, Ivanov ES (1976) Fiziko-Khimicheskaya Mekhanika Materialov 12:106Google Scholar
  46. 46.
    Shiao ML, Nair SV, Garrett PD, Pollard RE (1994) Polymer 35:306CrossRefGoogle Scholar
  47. 47.
    Friedrich K (1985) Compos Sci Technol 22:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of AkronAkronUSA

Personalised recommendations