Journal of Materials Science

, Volume 44, Issue 2, pp 379–384 | Cite as

Study on the interaction between a dislocation and impurities in KCl:Sr2+ single crystals by the Blaha effect—Part IV influence of heat treatment on dislocation density

  • Y. KohzukiEmail author


Strain-rate cycling tests associated with ultrasonic oscillation were carried out at 80–239 K for two kinds of KCl:Sr2+ (0.05 mol.% in the melt) single crystals: one is a quenched specimen and the other an annealed one. In this study, it was found that the density of moving dislocation is not influenced by the heat treatment. Furthermore, the increase in forest dislocation density for the annealed specimen seemed to be remarkable under the compression test, compared with that for the quenched specimen. As a result, the strain-hardening rate increased and the extent of plastic deformation region became short at a given temperature by annealing the quenched specimens. The investigation concerning forest dislocation density was conducted on the basis of the \( \Updelta (\Updelta \tau^{\prime}/\Updelta \ln \dot{\varepsilon })/\Updelta \varepsilon , \) which will represent the variation of the strain-rate sensitivity due to dislocation cuttings with shear strain.


Gibbs Free Energy Shear Strain Relative Curve Annealed Specimen Ultrasonic Oscillation 


  1. 1.
    Ohgaku T, Takeuchi N (1992) Phys Status Solidi (a) 134:397CrossRefGoogle Scholar
  2. 2.
    Kohzuki Y, Ohgaku T, Takeuchi N (1993) J Mater Sci 28:3612. doi: CrossRefGoogle Scholar
  3. 3.
    Kohzuki Y, Ohgaku T, Takeuchi N (1993) J Mater Sci 28:6329. doi: CrossRefGoogle Scholar
  4. 4.
    Kohzuki Y, Ohgaku T, Takeuchi N (1995) J Mater Sci 30:101. doi: CrossRefGoogle Scholar
  5. 5.
    Kohzuki Y (1998) J Mater Sci 33:5613. doi: CrossRefGoogle Scholar
  6. 6.
    Dryden JS, Morimoto S, Cook JS (1965) Philos Mag 12:379CrossRefGoogle Scholar
  7. 7.
    Kohzuki Y (2000) J Mater Sci 35:3397. doi: CrossRefGoogle Scholar
  8. 8.
    Kohzuki Y, Ohgaku T (2001) J Mater Sci 36:923. doi: CrossRefGoogle Scholar
  9. 9.
    Fleischer RL (1962) J Appl Phys 33:3504CrossRefGoogle Scholar
  10. 10.
    Friedel J (1964) Dislocations. Pergamon Press, Oxford, p 224Google Scholar
  11. 11.
    Kohzuki Y, Ohgaku T (2004) J Mater Sci 39:107. doi: CrossRefGoogle Scholar
  12. 12.
    Cook JS, Dryden JS (1962) Proc Phys Soc 80:479CrossRefGoogle Scholar
  13. 13.
    Christian JW, Masters BC (1964) Proc R Soc A281:240Google Scholar
  14. 14.
    Foreman AJE, Makin MJ (1966) Philos Mag 14:911CrossRefGoogle Scholar
  15. 15.
    Sumino K (1972) Jpn Inst Metals 11:31 (in Japanese)CrossRefGoogle Scholar
  16. 16.
    Kohzuki Y (2003) J Mater Sci 38:953. doi: CrossRefGoogle Scholar
  17. 17.
    Kohzuki Y (2000) J Mater Sci 35:2273. doi: CrossRefGoogle Scholar
  18. 18.
    Alden TH (1964) Trans Met Soc AIME 230:649Google Scholar
  19. 19.
    Davis LA, Gordon RB (1969) J Appl Phys 40:4507CrossRefGoogle Scholar
  20. 20.
    Evans AG, Pratt PL (1970) Philos Mag 21:951CrossRefGoogle Scholar
  21. 21.
    Suszyńska M (1974) Kristall Technik 9:1199CrossRefGoogle Scholar
  22. 22.
    Michalak JT (1965) Acta Metall 13:213CrossRefGoogle Scholar
  23. 23.
    Sprackling MT (1976) In: Alper AM, Margrave JL, Nowick AS (eds) The plastic deformation of simple ionic crystals. Academic Press, London, p 203Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Oshima National College of Maritime TechnologyOshima-gunJapan

Personalised recommendations