Journal of Materials Science

, Volume 44, Issue 2, pp 385–391 | Cite as

Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods

  • Koushik Majhi
  • K. B. R. VarmaEmail author


Transparent glasses of CaBi2B2O7 (CBBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The glass transition (Tg) and the crystallization parameters (crystallization activation energy (Ecr) and Avrami exponent (n)) were evaluated under non-isothermal conditions using DSC. The heating rate dependent glass transition and the crystallization temperatures were rationalized by Lasocka equation for the as-quenched CBBO glasses. There was a close agreement between the activation energies for the crystallization process determined by Augis and Bennet and Kissinger methods. The variation of local activation energy (Ec(x)) that was determined by Ozawa method increased with the fraction of crystallization (x). The Avrami exponent (n(x)) decreased with the increase in fraction of crystallization (x), suggesting that there was a changeover in the crystallization process from the bulk to the surface.


Differential Scanning Calorimetry Crystallization Kinetic Differential Scanning Calorimetry Experiment Differential Scanning Calorimetry Trace Avrami Exponent 


  1. 1.
    Takahashi Y, Benino Y, Fujiwara T, Komatsu T (2001) J Appl Phys 89:5282CrossRefGoogle Scholar
  2. 2.
    Murugan GS, Varma KBR, Takahashi Y, Komatsu T (2001) Appl Phys Lett 78:4019CrossRefGoogle Scholar
  3. 3.
    Prasad NS, Varma KBR, Takahashi Y, Benino Y, Fujiwara T, Komatsu T (2003) J Solid State Chem 173:209CrossRefGoogle Scholar
  4. 4.
    Barbier J, Cranswick LMD (2006) J Solid State Chem 179:3958CrossRefGoogle Scholar
  5. 5.
    Ray CS, Zang T, Reis ST, Brow RK (2007) J Am Ceram Soc 90:769CrossRefGoogle Scholar
  6. 6.
    Kissinger HE (1957) Anal Chem 29:1702CrossRefGoogle Scholar
  7. 7.
    Ray CS, Fang X, Day DE (2000) J Am Ceram Soc 83:865CrossRefGoogle Scholar
  8. 8.
    Ray CS, Yang Q, Huang W, Day DE (1996) J Am Ceram Soc 79:3155CrossRefGoogle Scholar
  9. 9.
    Ray CS, Huang W, Day DE (1991) J Am Ceram Soc 74:60CrossRefGoogle Scholar
  10. 10.
    Avrami M (1939) J Chem Phys 7:1103CrossRefGoogle Scholar
  11. 11.
    Avrami M (1940) J Chem Phys 8:212CrossRefGoogle Scholar
  12. 12.
    Avrami M (1941) J Chem Phys 9:177CrossRefGoogle Scholar
  13. 13.
    Kissinger HE (1956) J Res Nat Bur Stand 57:217CrossRefGoogle Scholar
  14. 14.
    Moynihan CT, Easteal AJ, Wilder J (1974) J Phys Chem 78:2673CrossRefGoogle Scholar
  15. 15.
    Lasocka M (1976) Mater Sci Eng 23:173CrossRefGoogle Scholar
  16. 16.
    Bansal NP, Doremus RH, Bruce AJ, Moynihan CT (1983) J Am Ceram Soc 66:233CrossRefGoogle Scholar
  17. 17.
    Augis JA, Bennett JE (1978) J Therm Anal 13:283CrossRefGoogle Scholar
  18. 18.
    Prasad NS, Varma KBR (2005) J Am Ceram Soc 88:357CrossRefGoogle Scholar
  19. 19.
    Matusita K, Komatsu T, Yokota R (1984) J Mater Sci 19:291. doi: CrossRefGoogle Scholar
  20. 20.
    Calka A, Radlinski AP (1988) Mater Sci Eng 97:241CrossRefGoogle Scholar
  21. 21.
    Lu W, Yan B, Huang W (2005) J Non-Cryst Solids 351:3320CrossRefGoogle Scholar
  22. 22.
    Lu K, Wang JT (1991) Mater Sci Eng A 133:500CrossRefGoogle Scholar
  23. 23.
    Ozawa T (1986) J Therm Anal 31:547CrossRefGoogle Scholar
  24. 24.
    Yinnon H, Uhlmann DR (1983) J Non-Cryst Solids 54:253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations