Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 808–815 | Cite as

Intra-granular alpha precipitation in Ti–Nb–Zr–Ta biomedical alloys

  • S. Nag
  • R. Banerjee
  • H. L. Fraser
Article

Abstract

This article investigates the intra-granular precipitation of nanometer-scale α platelets in the β matrix of a complex quaternary β titanium alloy, Ti-35Nb-7Zr-5Ta (all in wt%), for orthopedic implant applications, during β-solutionizing/quenching/aging type heat-treatments. The role of metastable ω precipitates on the nucleation and growth of these α precipitates, has been specifically addressed by coupling transmission electron microscopy (TEM) and 3D atom probe (3DAP) tomography studies on this alloy. Athermal ω precipitates form in this alloy on quenching from above the β-transus temperature. On isothermal annealing at low temperatures (~400 °C), these ω precipitates coarsen, rejecting Zr into the adjacent β matrix as determined by 3DAP studies. Concurrently, the nucleation and growth of α precipitates is initiated at or near the ω/β interfaces, as determined by TEM studies. In addition to coherency strains induced by the ω precipitates, the local enrichment of Zr adjacent to these precipitates appears to play an important role in aiding the nucleation and growth of Zr-rich α precipitates in this alloy.

Keywords

Transmission Electron Microscopy Study Select Area Diffraction Pattern Coherency Strain Heterogeneous Nucleation Site Potent Nucleation Site 

Notes

Acknowledgements

This work has been supported in part by the U. S. Air Force Office of Scientific Research (AFOSR), the National Science Foundation (NSF), and, the Center for the Accelerated Maturation of Materials (CAMM) at the Ohio State University.

References

  1. 1.
    Long MJ, Rack HJ (1998) Biomaterials 19:1621CrossRefGoogle Scholar
  2. 2.
    Wang K (1996) Mater Sci Eng A213:134CrossRefGoogle Scholar
  3. 3.
    Qazi JI, Marquardt B, Rack HJ (2004) JOM 56(11):49CrossRefGoogle Scholar
  4. 4.
    Niinomi M, Hanawa T, Narushima T (2005) JOM 57(4):18CrossRefGoogle Scholar
  5. 5.
    Keicher DM, Smugeresky JE (1997) JOM 49(5):51CrossRefGoogle Scholar
  6. 6.
    Banerjee R, Nag S, Samuel S, Fraser HL (2006) J Biomed Mater Res 78A(2):298CrossRefGoogle Scholar
  7. 7.
    Samuel S, Nag S, Scharf T, Banerjee R (2008) MSE-C 28(3):414CrossRefGoogle Scholar
  8. 8.
    Banerjee R, Nag S, Fraser HL (2005) MSE-C 25(3):282CrossRefGoogle Scholar
  9. 9.
    Duerig TW, Williams JC (1984) Beta Titanium alloys in the 80’s: proceedings of the symposium. Atlanta, GA, United States, pp 19–67Google Scholar
  10. 10.
    Blackburn MJ, Williams JC (1968) Trans Met Soc AIME 242:2461Google Scholar
  11. 11.
    Pennock GM, Flower HM, West DRF (1980) Titanium ‘80: science and technology, pp 1343–1351Google Scholar
  12. 12.
    Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Mater Sci Eng A 312:182CrossRefGoogle Scholar
  13. 13.
    Thompson K, Lawrence D, Larson DJ, Olson JD, Kelly TF, Gorman B (2007) Ultramicroscopy 107:131CrossRefGoogle Scholar
  14. 14.
    DeFontaine D, Paton NE, Williams JC (1971) Acta Mater 19:1153CrossRefGoogle Scholar
  15. 15.
    Banerjee R, Collins PC, Bhattacharyya D, Banerjee S, Fraser HL (2003) Acta Mater 51(11):3277CrossRefGoogle Scholar
  16. 16.
    Williams JC, Hickman BS, Leslie DH (1971) Metall Trans 2:477CrossRefGoogle Scholar
  17. 17.
    Furuhara T, Maki T, Makino T (2001) J Mater Proc Technol 117:318CrossRefGoogle Scholar
  18. 18.
    Hickman BS (1968) J Inst Met 96:330Google Scholar
  19. 19.
    Langmayr F, Fratzl P, Vogl G (1994) Phys Rev B 49–17:11759CrossRefGoogle Scholar
  20. 20.
    Azimzadeh S, Rack HJ (1998) Metall Mater Trans A 29:2455CrossRefGoogle Scholar
  21. 21.
    Prima F, Vermaut P, Texier G, Ansel D, Gloriant T (2006) Scripta Mater 54:645CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Center for the Accelerated Maturation of Materials, Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations