Advertisement

Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels

  • M. Popa
  • L. Diamandescu
  • F. Vasiliu
  • C. M. Teodorescu
  • V. Cosoveanu
  • M. Baia
  • M. Feder
  • L. Baia
  • V. Danciu
Article

Abstract

Fe(III)-doped TiO2 aerogels are prepared by acid catalyzed sol–gel method followed by supercritical drying, and then heat treatment. Raman spectra together with X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns of the iron-doped TiO2 aerogel samples revealed the existence of both anatase and brookite crystalline phases. It was found that the brookite phase formation is favored by the increase of the iron content in the dried samples. XRD measurements show that the lattice constant c of anatase phase decreases with the dopant addition, while the value of a remains essentially unchanged. The microstructure of the investigated samples is relatively compact with small mesopores as revealed from transmission electron microscopy (TEM). The most enhanced photocatalytic activity was exhibited by the TiO2 aerogel sample with 1.8 at.% Fe(III) whose apparent rate constant of the salicylic acid photodegradation was found to be of almost six times higher than that of Degussa P25.

Keywords

TiO2 Salicylic Acid Photocatalytic Activity Anatase Phase Select Area Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bahnemann D, Cunningham J, Fox MA, Pelizzetti E, Serpone N (1994) In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis Publisher, Boca Raton, FLGoogle Scholar
  2. 2.
    Ollis DF, Al-Ekabi H (1993) Photocatalytic purification and treatment of water and air. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  4. 4.
    Pichat P (1994) Catal Today 19:313CrossRefGoogle Scholar
  5. 5.
    Wang C-Y, Liu C-Y, Shen T (1997) J Photochem Photobiol A 109:65CrossRefGoogle Scholar
  6. 6.
    Wang C-Y, Liu C-Y (2002) In: Hubbard A, Barbara S (eds) Encyclopedia of surface and colloid science. Marcel Dekker, NY, p 4926Google Scholar
  7. 7.
    Wang C-Y, Liu C-Y, Zheng X, Chen J, Shen T (1998) Colloids Surf A 131(1–3):271CrossRefGoogle Scholar
  8. 8.
    Wang C-Y, Liu C-Y, Chen J, Shen T (1997) J Colloid Interf Sci 191:464CrossRefGoogle Scholar
  9. 9.
    Cao Y, Zhang X, Yang W, Du H, Bai Y, Li T, Yao J (2000) Chem Mater 12:3445CrossRefGoogle Scholar
  10. 10.
    Tada H, Hattori A, Tokihisa Y, Imai K, Tohge N, Ito S (2000) J Phys Chem B 104:4585CrossRefGoogle Scholar
  11. 11.
    Wang C-Y, Bahnemann D, Dohrmann JK (2000) Chem Commun 1539Google Scholar
  12. 12.
    Wang JA, Limas-Ballesteros R, Lopez T, Moreno A, Gomez R, Novaro O, Bokhimi X (2001) J Phys Chem B 105:9692CrossRefGoogle Scholar
  13. 13.
    Barau (Szatvanyi) A, Crisan M, Gartner M, Danciu V, Cosoveanu V, Marian I, Anastasescu M, Zaharescu M (2005) Mat Sci Forum 492–493:311CrossRefGoogle Scholar
  14. 14.
    Barau (Szatvanyi) A, Crisan M, Gartner M, Jitianu A, Zaharescu M, Ghita A, Danciu V, Cosoveanu V, Marian I (2006) J Sol-Gel Sci Tech 37:175CrossRefGoogle Scholar
  15. 15.
    Kelly S, Pollak FH, Tomkiewicz M (1997) J Phys Chem B 101:273Google Scholar
  16. 16.
    Zhu Z, Lin M, Dagan G, Tomkiewicz M (1995) J Phys Chem 99:15953Google Scholar
  17. 17.
    Peter A, Danciu V, Cosoveanu V, Moldovan Z, Indrea E, Nutiu G, Baia L, Rosu I (2005) In: Proceedings of innovations in the field of water supply sanitation and water quality management, p 103Google Scholar
  18. 18.
    Wang C-Y, Bottcher C, Bahnemann DW, Dohrmann JK (2003) J Mat Chem 13:2322CrossRefGoogle Scholar
  19. 19.
    Baia L, Baia M, Peter A, Cosoveanu V, Danciu V (2007) J Optoelectr Adv Mater 9(3):668Google Scholar
  20. 20.
    Ryu J, Choi W (2008) Environ Sci Technol 42:294–300PubMedCrossRefGoogle Scholar
  21. 21.
    Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321CrossRefADSGoogle Scholar
  22. 22.
    Adan C, Bahamonde A, Fernandez-Garcia M, Martinez-Arias A (2007) Appl Catal B Environ 72:11–17CrossRefGoogle Scholar
  23. 23.
    Zhang YH, Chan CK, Porter JF, Guo W (1998) J Mater Res 13:2602CrossRefADSGoogle Scholar
  24. 24.
    Busca G, Ramis G, Amores JMG, Escribano VS, Piaggio P (1994) J Chem Soc Faraday Trans 90:3181CrossRefGoogle Scholar
  25. 25.
    Gotic M, Ivanda M, Sekulic A, Music S, Popovic S, Turkovic A, Furic K (1996) Mater Lett 28:225CrossRefGoogle Scholar
  26. 26.
    Tompsett GA, Bowmaker GA, Cooney BP, Metson JB, Rodgers KA, Seakins JM (1995) J Raman Spectrosc 26:57CrossRefADSGoogle Scholar
  27. 27.
    Kelly S, Pollak FH, Tomkiewicz M (1997) J Phys Chem B 101:2730CrossRefGoogle Scholar
  28. 28.
    Baia L, Peter A, Cosoveanu V, Indrea E, Baia M, Popp J, Danciu V (2006) Thin Solid Films 511–512:512CrossRefGoogle Scholar
  29. 29.
    Choi HC, Jung YM, Kim SB (2005) Vibrat Spectrosc 37:33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Popa
    • 1
  • L. Diamandescu
    • 2
  • F. Vasiliu
    • 2
  • C. M. Teodorescu
    • 2
  • V. Cosoveanu
    • 1
  • M. Baia
    • 3
  • M. Feder
    • 2
  • L. Baia
    • 3
  • V. Danciu
    • 1
  1. 1.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.National Institute of Materials PhysicsBucharestRomania
  3. 3.Faculty of PhysicsBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations