Journal of Materials Science

, Volume 44, Issue 3, pp 794–798 | Cite as

Synthesis of In(OH)3 and In2O3 nanomaterials incorporating Au

  • Shih-Yeh Chen
  • Ming-Cheng Wu
  • Chi-Shen LeeEmail author
  • M. C. Lin


In(OH)3 and In2O3 nanocrystals of rectangular shape and incorporating Au were synthesized with a hydrothermal process and thermal decomposition. Powder X-ray diffraction, electron microscopy (SEM, TEM), and energy-dispersive spectroscopy studies reveal that elemental Au nanoparticles are dispersed on the surface of In(OH)3 rectangular nanocrystals and incorporated into In2O3 nanoporous particles. UV–vis spectral measurements reveal a surface-enchanced plasma band near λ ~532 nm for both Au-incorporating nanomaterials. The BET surface areas of Au-incorporating In(OH)3 and In2O3 are 26.2 and 35.5 m2/g, respectively. The incorporation of elemental Au in In(OH)3 and In2O3 nanomaterials is attractive for sensor, catalyst and solar-cell applications.


Gold Nanoparticles In2O3 Elemental Gold In2O3 Nanoparticles In2O3 Nanostructures 



For technical assistance we thank Dr. Hwo-Shuenn Sheu at National Synchrotron Radiation Research Center for the XRD experiment, Professors Jim Leu and Chia-Ming Yang for BET measurements, Professor Teng-Ming Chen for UV and PL measurements and Professor Chain-Shu Hsu for TGA measurements. Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan (contract NL940251) and National Science Council (contracts NSC94-2113-M-009-012, 94-2120-M-009-014) supported this research. MCL acknowledges Taiwan Semiconductor Manufacturing Co. for the TSMC distinguished professorship and Taiwan National Science Council for the Distinguished Visiting Professorship at National Chiao Tung University.


  1. 1.
    Li J, Hao J, Cui X, Fu L (2005) Catal Lett 103:75CrossRefGoogle Scholar
  2. 2.
    Gervasini A, Perdigon-Melon JA, Guimon C, Auroux A (2006) J Phys Chem B 110:240CrossRefGoogle Scholar
  3. 3.
    Hsiao WI, Lin YS, Chen YC, Lee CS (2007) Chem Phys Lett 441:294CrossRefGoogle Scholar
  4. 4.
    Lei Z, Maa G, Liu M, You W, Yan H, Wu G, Takata T, Hara M, Domen K, Li C (2006) J Catal 237:322CrossRefGoogle Scholar
  5. 5.
    Tian Y, Tatsuma T (2005) J Am Chem Soc 127:7632CrossRefGoogle Scholar
  6. 6.
    Chen X, Mao SS (2007) Chem Rev 107:2891CrossRefGoogle Scholar
  7. 7.
    Zuruzi AS, MacDonald NC, Moskovits M, Kolmakov A (2007) Angew Chem Int Ed 46:4298CrossRefGoogle Scholar
  8. 8.
    Ishida T, Kuwabara K (1998) J Ceram Soc Jpn 106:381CrossRefGoogle Scholar
  9. 9.
    Li C, Zhang D, Lei B, Han S, Liu X, Zhou C (2003) J Phys Chem B 107:12451CrossRefGoogle Scholar
  10. 10.
    Soulantica K, Erades L, Sauvan M, Senocq F, Maisonnat A, Chaudret B (2003) Adv Funct Mater 13:553CrossRefGoogle Scholar
  11. 11.
    Datta A, Panda SK, Ganguli D, Mishra P, Chaudhuri S (2007) Cryst Growth Design 7:163CrossRefGoogle Scholar
  12. 12.
    Liu Q, Lu W, Ma A, Tang J, Lin J, Fang J (2005) J Am Chem Soc 127:5276CrossRefGoogle Scholar
  13. 13.
    Huang J, Gao L (2006) Cryst Growth Design 6:1528CrossRefGoogle Scholar
  14. 14.
    Wang G, Park J, Wexler D, Park MS, Ahn J-H (2007) Inorg Chem 46:4778CrossRefGoogle Scholar
  15. 15.
    Li C, Zhang D, Han S, Liu X, Tang T, Zhou C (2003) Adv Mater 15:143CrossRefGoogle Scholar
  16. 16.
    Du N, Zhang H, Chen B, Ma X, Liu Z, Wu J, Yang D (2007) Adv Mater 19:1641CrossRefGoogle Scholar
  17. 17.
    Yang J, Lin C, Wang Z, Lin J (2006) Inorg Chem 45:8973CrossRefGoogle Scholar
  18. 18.
    Li B, Xie Y, Jing M, Rong G, Tang Y, Zhang G (2006) Langmuir 22:9380CrossRefGoogle Scholar
  19. 19.
    Basharat S, Carmalt CJ, Barnett SA, Tocher DA, Davies HO (2007) Inorg Chem 46:9473CrossRefGoogle Scholar
  20. 20.
    Daniel M-C, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  21. 21.
    Patil NS, Jha R, Uphade BS, Bhargava SK, Choudhary VR (2004) Appl Catal A Gen 275:87CrossRefGoogle Scholar
  22. 22.
    Debeila MA, Wells RPK, Anderson JA (2006) J Catal 239:162CrossRefGoogle Scholar
  23. 23.
    Laugier J, Bochu B (2003) CELREF. Laboratoire des Matèriaux du Genie Physique, Saint Martin d’Hères, FranceGoogle Scholar
  24. 24.
    Daniel M-C, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  25. 25.
    Zhuang Z, Peng Q, Liu J, Wang X, Li Y (2007) Inorg Chem 46:5179CrossRefGoogle Scholar
  26. 26.
    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoçd H (2005) J Appl Phys 98:041301CrossRefGoogle Scholar
  27. 27.
    Wu M-C, Lee C-S (2006) Inorg Chem 45:1415CrossRefGoogle Scholar
  28. 28.
    Lee CH, Kim M, Kim T, Kim A, Paek J, Lee JW, Choi S-Y, Kim K, Park J-B, Lee K (2006) J Am Chem Soc 128:9326CrossRefGoogle Scholar
  29. 29.
    Tang Q, Zhou W, Zhang W, Ou S, Jiang K, Yu W, Qian Y (2005) Cryst Growth Design 5:147CrossRefGoogle Scholar
  30. 30.
    Liang CH, Meng GW, Lei Y, Phillipp F, Zhang LD (2001) Adv Mater 13:1330CrossRefGoogle Scholar
  31. 31.
    Baes CF, Mesmer RE (1986) The hydrolysis of cations. R.E. Krieger, Malabar, FlaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shih-Yeh Chen
    • 1
  • Ming-Cheng Wu
    • 1
  • Chi-Shen Lee
    • 1
    Email author
  • M. C. Lin
    • 1
  1. 1.Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations