Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 433–440 | Cite as

Wear resistance of electrodeposited Ni–B and Ni–B–Si3N4 composite coatings

  • K. Krishnaveni
  • T. S. N. Sankara NarayananEmail author
  • S. K. Seshadri
Article

Abstract

The wear resistance of electrodeposited (ED) Ni–B and Ni–B–Si3N4 composite coatings is compared. The effect of incorporation of Si3N4 particles in the ED Ni–B matrix on the surface morphology, structural characteristics and microhardness has been evaluated to correlate the wear resistance. The wear mechanism of ED Ni–B and Ni–B–Si3N4 composite coatings appears to be similar; both involve intensive plastic deformation of the coating due to the ploughing action of the hard counter disc. However, the extent of wear damage is relatively small for ED Ni–B–Si3N4 composite coatings.

Keywords

Wear Resistance Composite Coating Wear Track Adhesive Wear Specific Wear Rate 

Notes

Acknowledgements

Financial support given to this study by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, was gratefully acknowledged. The authors are thankful to Prof. S. P. Mehrotra, Director, National Metallurgical Laboratory, Jamshedpur, for his constant support and encouragement to carry out this research work.

References

  1. 1.
    Musiani M (2000) Electrochim Acta 45:3397CrossRefGoogle Scholar
  2. 2.
    Agarwala RC, Agarwala V (2003) Sadhana 28:475CrossRefGoogle Scholar
  3. 3.
    Balaraju JN, Sankara Narayanan TSN, Seshadri SK (2003) J Appl Electrochem 33:807CrossRefGoogle Scholar
  4. 4.
    Low CTJ, Wills RGA, Walsh FC (2006) Surf Coat Technol 201:371CrossRefGoogle Scholar
  5. 5.
    Sarret M, Müller C, Amell A (2006) Surf Coat Technol 201:389CrossRefGoogle Scholar
  6. 6.
    Balaraju JN (2000) PhD Thesis, Indian Institute of Technology-Madras, ChennaiGoogle Scholar
  7. 7.
    Ramesh CS, Seshadri SK (2003) Wear 255:893CrossRefGoogle Scholar
  8. 8.
    Wang Y, Tung SC (1999) Wear 225–229:1100CrossRefGoogle Scholar
  9. 9.
    Xia Y, Sasaki S, Murakami T, Nakano M, Shi L, Wang H (2007) Wear 262:765CrossRefGoogle Scholar
  10. 10.
    Shi L, Sun CF, Zhou F, Liu WM (2005) Mater Sci Eng A 397:190CrossRefGoogle Scholar
  11. 11.
    Das CM, Limaye PK, Grover AK, Suri AK (2007) J Alloys Compd 436:328CrossRefGoogle Scholar
  12. 12.
    Balaraju JN, Sankara Narayanan TSN, Seshadri SK (2006) Mater Res Bull 41(4):847CrossRefGoogle Scholar
  13. 13.
    Balaraju JN, Rajam KS (2007) Int J Electrochem Sci 2:747Google Scholar
  14. 14.
    Balaraju JN, Rajam KS (2008) J Alloys Compd 459:311CrossRefGoogle Scholar
  15. 15.
    Du L, Xu B, Dong S, Yang H, Tu W (2004) Wear 257:1058CrossRefGoogle Scholar
  16. 16.
    Xinmin H, Zonggang D (1993) Plat Surf Finish 80:62Google Scholar
  17. 17.
    Krishnaveni K, Sankara Narayanan TSN, Seshadri SK (2006) Mater Chem Phys 99:300CrossRefGoogle Scholar
  18. 18.
    Sankara Narayanan TSN, Seshadri SK (2004) J Alloys Compd 165:197CrossRefGoogle Scholar
  19. 19.
    Krishnaveni K, Sankara Narayanan TSN, Seshadri SK (2005) Surf Coat Technol 190:115CrossRefGoogle Scholar
  20. 20.
    Krishnaveni K, Sankara Narayanan TSN, Seshadri SK (2008) J Alloys Compd 466:412CrossRefGoogle Scholar
  21. 21.
    Wu X, Sha W (2008) Appl Surf Sci (in press). doi: https://doi.org/10.1016/j.apsusc.2008.08.018 CrossRefGoogle Scholar
  22. 22.
    Bozzini B, Martini C, Cavallotti PL, Lanzoni E (1999) Wear 225–229:806CrossRefGoogle Scholar
  23. 23.
    McCormack AG, Pomeroy MJ, Cunnane VJ (2003) J Electrochem Soc 150(5):C356CrossRefGoogle Scholar
  24. 24.
    Carac G, Benea L, Iticescu C, Lampke T, Steinhauser S, Wielage B (2004) Surf Eng 20(5):353CrossRefGoogle Scholar
  25. 25.
    Qu NS, Zhu D, Chan KC (2006) Scr Mater 54:1421CrossRefGoogle Scholar
  26. 26.
    Keong KG, Sha W, Malinov S (2003) Surf Coat Technol 168:263CrossRefGoogle Scholar
  27. 27.
    Hollomon JH, Jaffe LD (1945) Trans AIME 162:223Google Scholar
  28. 28.
    Bhadeshia HKDH (1997) Mater Sci Eng A 223:64CrossRefGoogle Scholar
  29. 29.
    Baloch MM, Bhadeshia HKDH (1990) Mater Sci Technol 6:1236CrossRefGoogle Scholar
  30. 30.
    Yang Y, Torrance AA, Rodriguez J (1996) Sol Energy Mater Sol Cells 40(2):103CrossRefGoogle Scholar
  31. 31.
    Ashby MF, Easterling KE (1982) Acta Metall 30(11):1969CrossRefGoogle Scholar
  32. 32.
    Staia MH, Castillo EJ, Puchi ES, Lewis DB, Hintermann HE (1996) Surf Coat Technol 86–87:598CrossRefGoogle Scholar
  33. 33.
    Wu YC, Li GH, Zhang L (2000) Surf Eng 16:506CrossRefGoogle Scholar
  34. 34.
    Hou KH, Ger MD, Wang LM, Ke ST (2002) Wear 253:994CrossRefGoogle Scholar
  35. 35.
    Wu G, Li N, Zhou D, Mitsuo K (2003) Surf Coat Technol 176:157CrossRefGoogle Scholar
  36. 36.
    Chang LM, An MZ, Shi SY (2006) Mater Chem Phys 100:395CrossRefGoogle Scholar
  37. 37.
    Grosjean A, Rezrazi M, Takadoum J, Berçot P (2001) Surf Coat Technol 137:92CrossRefGoogle Scholar
  38. 38.
    Panagopoulos CN, Agathocleous PE, Papachristos VD, Michaelides A (2000) Surf Coat Technol 123:62CrossRefGoogle Scholar
  39. 39.
    Panagopoulos CN, Georgarakis KG, Agathocleous PE (2003) Tribol Int 36:619CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Krishnaveni
    • 1
  • T. S. N. Sankara Narayanan
    • 1
    Email author
  • S. K. Seshadri
    • 2
  1. 1.National Metallurgical Laboratory (Madras Centre)ChennaiIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyChennaiIndia

Personalised recommendations