Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 786–793 | Cite as

Enhanced corrosion resistance of discontinuous anodic film on in situ TiB2p/A356 composite by cerium electrolysis treatment

  • Huanhuan Sun
  • Xianfeng Li
  • Dong Chen
  • Haowei WangEmail author
Article

Abstract

The agglomerates of TiB2 particulates and Si phases badly break the continuity of anodized film of in situ TiB2p/A356 composite, which will restrict the improvement of corrosion resistance. In this study, cerium conversion coatings were successfully deposited on anodized TiB2p/A356 composite by electrolysis treatment. Scanning electron microscope observations show that the conversion coatings effectively cover the whole surface of anodized composite. The conversion coatings on continuous porous anodic film are composed of many spherical nano-particulates; however, at the regions without anodic film the conversion coatings present a planar structure. The different morphologies are attributed to the different formation characteristics of cerium conversion coatings at different regions of anodized composite. X-ray photoelectron spectroscopy analysis indicates that the conversion coatings consist of CeO2, Ce2O3, Ce(OH)4, and Ce(OH)3. The potentiodynamic polarization results testify that the integrated surface coatings of anodic film and cerium conversion coating provide a higher degree of protection for in situ TiB2p/A356 composite in a chloride-containing environment.

Keywords

Cerium Potentiodynamic Polarization Corrosion Current Density Conversion Coating Anodic Film 

References

  1. 1.
    Yi HZ, Ma NH, Li XF, Zhang YJ, Wang HW (2006) Mater Sci Eng A 419:12CrossRefGoogle Scholar
  2. 2.
    Mandal A, Chakraborty M, Murty BS (2008) Mater Sci Eng A 489:220CrossRefGoogle Scholar
  3. 3.
    Lakshmi S, Lu L, Gupta M (1998) J Mater Process Technol 73:160CrossRefGoogle Scholar
  4. 4.
    Zhang YJ, Ma NH, Wang HW, Le YK, Li SC (2005) Scr Mater 53:1171CrossRefGoogle Scholar
  5. 5.
    Lu L, Lai MO, Chen FL (1997) Acta Mater 45:4297CrossRefGoogle Scholar
  6. 6.
    Yi HZ, Ma NH, Zhang YJ, Li XF, Wang HW (2006) Scr Mater 54:1093CrossRefGoogle Scholar
  7. 7.
    Tee KL, Lü L, Lai MO (2003) Mater Sci Eng A 339:227CrossRefGoogle Scholar
  8. 8.
    Kennedy AR, Karantzalis AE, Wyatt AM (1999) J Mater Sci 34:933. doi: https://doi.org/10.1023/A:1004519306186 CrossRefGoogle Scholar
  9. 9.
    Ceng L, Zhang J (2001) J Mater Sci Technol 17:675Google Scholar
  10. 10.
    Sekhawat DS, Chakraborty M, Chatterjee UK (2005) Mater Sci Forum 475–479:449CrossRefGoogle Scholar
  11. 11.
    Shahid M (1997) J Mater Sci 32:3775. doi: https://doi.org/10.1023/A:1018623623116 CrossRefGoogle Scholar
  12. 12.
    Picas JA, Forn A, Rupérez E, Baile MT, Martín E (2007) Plasma Process Polym 4:S579CrossRefGoogle Scholar
  13. 13.
    Cheng BR, Hao L (2000) Met Finish 98(5):48CrossRefGoogle Scholar
  14. 14.
    Snogan F, Blanc C, Mankowski G, Pébère N (2002) Surf Coat Technol 154(1):94CrossRefGoogle Scholar
  15. 15.
    Zuo Y, Zhao PH, Zhao JM (2003) Surf Coat Technol 166:237CrossRefGoogle Scholar
  16. 16.
    Yu X, Cao C, Yao Z (2000) Mater Sci Lett 19:1907CrossRefGoogle Scholar
  17. 17.
    Creus J, Brezault F, Rebere C, Gadouleau M (2006) Surf Coat Technol 200:4636CrossRefGoogle Scholar
  18. 18.
    Kumar S, Subramanya Sarma V, Murty BS (2008) Mater Sci Eng A 476:333CrossRefGoogle Scholar
  19. 19.
    Shyu JZ, Otto K, Watkins WLH, Graham GW, Belitz RK, Gandhi HS (1988) J Catal 114:23CrossRefGoogle Scholar
  20. 20.
    Yu XW, Li GQ (2004) J Alloys Compd 364:193CrossRefGoogle Scholar
  21. 21.
    Pardo A, Merino MC, Arrabal R, Viejo F, Muñoz JA (2007) Appl Surf Sci 253:3334CrossRefGoogle Scholar
  22. 22.
    Arnott DR, Ryan NE, Hinton BRW, Sexton BA, Hughes AE (1985) Appl Surf Sci 22–23:236Google Scholar
  23. 23.
    Aldykiewicz AJ, Davenport AJ, Isaacs HS (1996) J Electrochem Soc 143:147CrossRefGoogle Scholar
  24. 24.
    Gao YZ (1985) Surface treatment of aluminum alloys. Metallurgy Industry Press, Beijing (in Chinese)Google Scholar
  25. 25.
    Davenport AJ, Isaacs HS, Kendig MW (1991) Corros Sci 32:653CrossRefGoogle Scholar
  26. 26.
    Johnson BY, Edington J, O’Keefe MJ (2003) Mater Sci Eng A 361:225CrossRefGoogle Scholar
  27. 27.
    Li GQ, Li D, Li JQ, Guo BL, Peng MX (2001) J Chin Soc Corros Prot 21:150 (in Chinese)Google Scholar
  28. 28.
    Li FB, Newman RC, Thompson GE (1997) Electrochim Acta 42:2455CrossRefGoogle Scholar
  29. 29.
    Jone DA (1992) In: Johnstone D (ed) Principles and prevention of corrosion. Macmillan, New YorkGoogle Scholar
  30. 30.
    Duan HP, Du KQ, Yan CW, Wang FH (2006) Electrochim Acta 51:2898CrossRefGoogle Scholar
  31. 31.
    Guo HF, An MZ (2005) Appl Surf Sci 246:229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Huanhuan Sun
    • 1
  • Xianfeng Li
    • 1
  • Dong Chen
    • 1
  • Haowei Wang
    • 1
    Email author
  1. 1.State Key Lab of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations