Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 47–54 | Cite as

Microstructures and mechanical properties of Mg–Al–Zn–Ca alloys fabricated by high frequency electromagnetic casting method

  • J. P. Park
  • M. G. Kim
  • U. S. Yoon
  • W. J. KimEmail author
Article

Abstract

The microstructures and mechanical properties of AZ31 and 1 wt%Ca-containing AZ31 billets fabricated using EMC (Electromagnetic Casting) and EMS (Electromagnetic Stirring) were examined. The results show a great potential of producing high-quality surface magnesium billets with fine-grained microstructure at a relatively high casting speed. Application of EMC + EMS for production of the 1 wt%Ca-AZ31 alloy billet with a diameter of 150 mm produced a reasonably homogeneous microstructure composed of fine grains with an average size of 45 μm. Attainment of the fine-grained and homogeneous microstructure by EMC + EMS was attributed to reduction of temperature gradient and fragmentation of dendrite structure under electromagnetic force. Strength of the EMC and EMC + EMS 1 wt%Ca-AZ31 billets was higher than that of the EMC AZ31 billet due to the grain size and particle strengthening effects.

Keywords

Electromagnetic Force Mold Flux Casting Speed AZ31 Alloy Nugget Zone 

Notes

Acknowledgement

The authors wish to acknowledge the financial support of Korea Energy Management Co. for this work.

References

  1. 1.
    Itoyama S, Tozawa H, Mochida T, Kurokawa K (1998) ISIJ Int 38:461CrossRefGoogle Scholar
  2. 2.
    Furuhashi S, Yoshida M, Tanaka T (1998) Tetsu-to-Hagane (J Iron Steel Inst Jpn) 84:625CrossRefGoogle Scholar
  3. 3.
    Toh T, Takeuchi E, Hojo M, Kawai H, Matsumura S (1997) ISIJ Int 37:1112CrossRefGoogle Scholar
  4. 4.
    Wang Y, Zeng X, Ding W, Luo A, Sachdev AK (2007) Metall Mater Trans A 38:1358CrossRefGoogle Scholar
  5. 5.
    Guo S, Le Q, Zhao Z, Wang Z, Cui J (2005) Mater Sci Eng A 404:323CrossRefGoogle Scholar
  6. 6.
    Akiyama S, Ueno H, Sakamoto M, Hirai H, Kitahara A (2000) Mater Jpn 39:72CrossRefGoogle Scholar
  7. 7.
    Li P, Tang B, Kandalova EG (2005) Mater Lett 59:671CrossRefGoogle Scholar
  8. 8.
    Natarajan TT, Kaddah NE (2004) Appl Math Model 28:47CrossRefGoogle Scholar
  9. 9.
    Hu H, Shang R, Li N (2003) AFS Trans 111:1019Google Scholar
  10. 10.
    Ozturk K, Zhong Y, Luo AA, Liu Z (2003) JOM 55:40CrossRefGoogle Scholar
  11. 11.
    Suzuki A, Saddock ND, Jones JW, Pollock TM (2004) Scripta Mater 51:1005CrossRefGoogle Scholar
  12. 12.
    Zhong Y, Luo AA, Sofo JO, Liu Z (2004) In: Luo AA (ed) Magnesium technology 2004. Minerals, Metals and Materials Society, Warrendale, PA, p 317Google Scholar
  13. 13.
    Han L, Hu H, Northwood DO (2007) Mater Lett. doi: https://doi.org/10.1016/j.matlet.2007.05.047 CrossRefGoogle Scholar
  14. 14.
    Altman MB, Drits ME, Timonova MA, Chuhrov MV (1978) Magnesium alloys I, metals science of magnesium and its alloys. Moscow, USSR, p 101Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. P. Park
    • 1
  • M. G. Kim
    • 1
  • U. S. Yoon
    • 2
  • W. J. Kim
    • 3
    Email author
  1. 1.Research Institute of Science & TechnologyPohangRepublic of Korea
  2. 2.Jeonnam Techno-ParkJeonnamRepublic of Korea
  3. 3.Department of Materials Science and EngineeringHong-Ik UniversitySeoulRepublic of Korea

Personalised recommendations