Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1141–1158 | Cite as

A review of mechanical properties of lead-free solders for electronic packaging

  • Hongtao Ma
  • Jeffrey C. Suhling
Review

Abstract

The characterization of lead-free solders, especially after isothermal aging, is very important in order to accurately predict the reliability of solder joints. However, due to lack of experimental testing standards and the high homologous temperature of solder alloys (T h > 0.5T m even at room temperature), there are very large discrepancies in both the tensile and creep properties provided in current databases for both lead-free and Sn–Pb solder alloys. Some recent researches show that the room temperature aging has significant effects on mechanical properties of solders. This paper is intended to review all available data in the field and give rise to the possible factors including room temperature effects which causes the large discrepancies of data. This review of the research literatures has documented the dramatic changes that occur in the constitutive and failure behavior of solder materials and solder joint interfaces during isothermal aging. However, these effects have been largely ignored in most previous studies involving solder material characterization or finite element predictions of solder joint reliability during thermal cycling. It is widely acknowledged that the large discrepancies in measured solder mechanical properties from one study to another arise due to differences in the microstructures of the tested samples. This problem is exacerbated by the aging issue, as it is clear that the microstructure and material behavior of the samples used in even a single investigation are moving targets that change rapidly even at room temperature. Furthermore, the effects of aging on solder behavior must be better understood so that more accurate viscoplastic constitutive equations can be developed for SnPb and SAC solders. Without such well-defined relationship, it is doubtful that finite element reliability predictions can ever reach their full potential.

Keywords

Solder Joint Solder Alloy Creep Deformation Isothermal Aging Eutectic Solder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allenby BR, Ciccarelli JP (1992) In: Proceeding of surface mount international conference, pp 1–28Google Scholar
  2. 2.
    Turbini LJ (2001) IEEE Trans Electron Pack Manuf 24(1):4CrossRefGoogle Scholar
  3. 3.
    Hwang JS (2004) Implementing lead-free electronics. McGraw-Hill, New York, NY, p 1Google Scholar
  4. 4.
    Grusd A (1999) In: Proceedings of the technical program NEPCON west, pp 212–221Google Scholar
  5. 5.
    IPC Roadmap (2000) A guide for assembly of lead-free electronics. IPC, Northbrook, ILGoogle Scholar
  6. 6.
    Abtew M, Selvaduray G (2000) Mater Sci Eng 27:95CrossRefGoogle Scholar
  7. 7.
    Zeng K, Tu KN (2002) Mater Sci Eng 38:55CrossRefGoogle Scholar
  8. 8.
    Karlya Y, Gagg C, Plumbridge WJ (2000) Solder Surf Mt Technol 13:39CrossRefGoogle Scholar
  9. 9.
    Lee NC (1997) Solder Surf Mt Technol 26:65CrossRefGoogle Scholar
  10. 10.
    Soldertec (2002) European lead-free roadmap, ver 1, p 1Google Scholar
  11. 11.
    Deubzer O, Hamano H, Suga T (2001) In: Proceedings of the 2001 IEEE international symposium on electronics and the environment, pp 290–295Google Scholar
  12. 12.
    Nimmo K (2004) In: Suganuma K (ed) Alloy selection, chapter 3 of lead-free soldering in electronics: science, technology and environmental impact. Marcel Dekker, New York, p 61Google Scholar
  13. 13.
    Ye L, Lai ZH, Liu J, Thölén A (2001) Solder Surf Mt Technol 13:16CrossRefGoogle Scholar
  14. 14.
    Iting T, Li JT, Yen SF, Chuang TH, Lo R, Ku T, Wu E (2005) In: Proceedings of the 55th electronic components and technology conference, pp 687–691Google Scholar
  15. 15.
    Fields RJ, Low SR. Physical and mechanical properties of intermetallic compounds commonly found in solder joints. Available online at: http://www.metallurgy.nist.gov/mechanical_properties/solder_paper.html
  16. 16.
    Ganesan S, Pecht M (2006) Lead-free electronics. Wiley-Interscience Publication, New York, p 51Google Scholar
  17. 17.
    Hwang J (2001) Environment-friendly electronics: lead free technology. Electrochemical Publications, British Isles, p 134Google Scholar
  18. 18.
    Hertzberg RW (1996) Deformation and fracture mechanics of engineering materials, 4th edn. Wiley, New York Google Scholar
  19. 19.
    Thornton PA, Colangelo VJ (1985) Fundamentals of engineering materials. Prentice-Hall, Inc, Upper Saddle River, NJ, p 227Google Scholar
  20. 20.
    Gilman JJ (1969) Micromechanics of flow in solids. McGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Ralls KM, Courtney TH, Wulff J (1976) Introduction to materials science and engineering. Wiley, New YorkGoogle Scholar
  22. 22.
    Vianco PT (2006) In: Shangguan D (ed) Fatigue and creep of lead-free solder alloys: fundamental properties, chapter 3 lead-free solder interconnect reliability. ASM International, Materials Park, OH, p 67Google Scholar
  23. 23.
    Wiese S, Schubert A, Walter H, Dudek R, Feustel F, Meusel E, Michel B (2001) In: Proceeding of the 51st electronic components and technology conference, pp 890–902Google Scholar
  24. 24.
    McCabe RJ, Fine ME (1998) Scripta Mater 39(2):189CrossRefGoogle Scholar
  25. 25.
    Lau JH, Pao YH (1997) Solder joints reliability of BGA, CSP, Flip-Chip, and Fine Pitch SMT assemblies. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Cadek J (1988) Creep in metallic materials. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Garofalo F (1966) Fundamentals of creep and creep-rupture in metals. Macmillan, New YorkGoogle Scholar
  28. 28.
    Evans RW, Wilshire B (1985) Creep of metals and alloys. The Institute of Metals, New York Google Scholar
  29. 29.
    Ashby MF (1972) Acta Metall 20:887CrossRefGoogle Scholar
  30. 30.
    Weertman J (1957) J Appl Phys 28:362CrossRefADSGoogle Scholar
  31. 31.
    Coble RL (1963) J Appl Phys 34:1679CrossRefADSGoogle Scholar
  32. 32.
    Nabarro FRN (1948) Report of a conference on the strength of solids. Physical Society, London, pp 75–81Google Scholar
  33. 33.
    Herring C (1950) J Appl Phys 21:437CrossRefADSGoogle Scholar
  34. 34.
    Shi XQ, Wang ZP, Yang QJ, Pang HLJ (2003) J Eng Mater Technol 125:81CrossRefGoogle Scholar
  35. 35.
    Mukherjee AK, Bird JE, Dorn JE (1969) Trans Am Soc Metal 62:155Google Scholar
  36. 36.
    Puttlitz KJ, Stalter KA (2004) Handbook of lead-free solder technology for microelectronic assemblies. Marcel Dekker, New YorkGoogle Scholar
  37. 37.
    Nose H, Sakane M, Tsukada Y, Nishimura H (2003) J Electron Packaging 125(1):59CrossRefGoogle Scholar
  38. 38.
    McCormack M, Chen HS, Jin S (1994) Appl Phys Lett 65(10):1233CrossRefADSGoogle Scholar
  39. 39.
    Shi XQ, Zhou W, Pang HLJ, Wang ZP (1999) J Electron Packaging 121(3):179CrossRefGoogle Scholar
  40. 40.
    Pang JHL, Xiong BS, Neo CC, Zhang XR, Low TH (2003) In: Proceeding of the 53rd electronic components and technology conference, pp 673–679Google Scholar
  41. 41.
    Pang JHL, Xiong BS, Low TH (2004) Thin Solid Films 462–463:408CrossRefGoogle Scholar
  42. 42.
    Yeung B, Jang JW (2002) J Mater Sci Lett 21:723CrossRefGoogle Scholar
  43. 43.
    Kim KS, Huh SH, Suganuma K (2002) Mater Sci Eng A 333:106Google Scholar
  44. 44.
    Madeni JC, Liu S, Siewert T (2002) In: Proceedings of the ASM international conferenceGoogle Scholar
  45. 45.
    Lin JK, De Silva A, Frear D, Guo Y, Hayes S, Jang JW, Li L, Mitchell D, Yeung B, Zhang C (2002) IEEE Trans Electron Pack Manuf 25(4):300CrossRefGoogle Scholar
  46. 46.
    Chuang CM, Liu TS, Chen LH (2002) J Mater Sci 37(1):191. doi: 10.1023/A:1013143218738 CrossRefGoogle Scholar
  47. 47.
    Vianco PT, Rejent JA, Grant R (2004) Trans Jpn Inst Metall 45:765Google Scholar
  48. 48.
    Xiao Q, Nguyen L, Armstrong WD (2004) In: Proceedings of the 54th electronic components and technology conference, pp 1325–1332Google Scholar
  49. 49.
    Xiao Q, Bailey HJ, Armstrong WD (2004) J Electron Packaging 126(2):208CrossRefGoogle Scholar
  50. 50.
    Shohji I, Yoshida T, Takahashi T, Hioki S (2004) Mater Sci Eng A366:50Google Scholar
  51. 51.
    Tsukada Y, Nishimura H, Yamamoto H, Sakane M (2005) J Electron Packaging 127(4):407CrossRefGoogle Scholar
  52. 52.
    Yang H, Phillip D, Paul M, Murty KL (1996) In: Proceeding of 46th electronic components and technology conference, pp 1136–1142Google Scholar
  53. 53.
    Liu CY, Chen C, Mal AK, Tu KN (1999) J Appl Phys 85(7):3882CrossRefGoogle Scholar
  54. 54.
    Rhee H, Subramanian KN, Lee A, Lee JG (2003) Sold Surf Mt Technol 15(3):21CrossRefGoogle Scholar
  55. 55.
    Pang JHL, Low TH, Xiong BS, Xu L, Neo CC (2004) Thin Solid Films 462–463:370CrossRefGoogle Scholar
  56. 56.
    Darveaux R (2005) In: Proceedings of the 55th electronic components and technology conference, pp 882–893Google Scholar
  57. 57.
    Obaid AA, Sloan JG, Lamontia MA, Paesano A, Khan S, Gillespie JW (2005) J Electron Packaging 127(4):483CrossRefGoogle Scholar
  58. 58.
    Zhang Q, Dasgupta A, Nelson D, Pallavicini H (2005) J Electron Packaging 127(4):415CrossRefGoogle Scholar
  59. 59.
    Chromik RR, Vinci RP, Allen SL, Notis MR (2003) JOM 55(6):66CrossRefGoogle Scholar
  60. 60.
    Vianco PT, Rejent JA, Martin JJ (2003) JOM 55(6):50CrossRefGoogle Scholar
  61. 61.
    Vianco PT, Rejent JA (2002) Compression deformation response of 95.5Sn–3.9Ag–0.6Cu solder, UCLA Workshop on Pb-free Electronics, 2002. Available at: http://www.seas.ucla.edu/eThinFilm/PbfreeWorkshop/pdf/vianco.pdf
  62. 62.
    Vianco PT, Rejent JA, Kilgo AC (2003) J Electron Mater 32(3):142CrossRefADSGoogle Scholar
  63. 63.
    Schubert A, Walter H, Dudek R, Michel B, Lefranc G, Otto J, Mitic G (2001) In: International symposium on advanced packaging materials, pp 129–134Google Scholar
  64. 64.
    Biglari MH, Oddy M, Oud MA, Davis P (2000) In: Proceeding of electronics goes green 2000+ conference, pp 73–82Google Scholar
  65. 65.
    Lau JH, Pao Y-H (1997) Solder joint reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT assemblies. McGraw-Hill, New YorkGoogle Scholar
  66. 66.
    Darveaux R, Banerji K, Mawer A, Dody G (1995) In: Lau JL (ed) Ball grid array technology. McGraw-Hill, New York, p 379Google Scholar
  67. 67.
    Lau JH, Chang C (1998) In: Proceeding of the 48th electronic component and technology conference, pp 1339–1344Google Scholar
  68. 68.
    Pang JHL, Xiong BS (2005) IEEE Trans Compon Pack Technol 28(4):830CrossRefGoogle Scholar
  69. 69.
    Kanchanomai C, Miyashita Y, Mutoh Y (2002) J Electron Mater 31:456CrossRefADSGoogle Scholar
  70. 70.
    Kim KS, Huh SH, Suganuma K (2002) Mater Sci Eng A 333:106Google Scholar
  71. 71.
    Amagai M, Watanabe M, Omiya M, Kishimoto K, Shibuya T (2002) Microelectron Reliab 42:951CrossRefGoogle Scholar
  72. 72.
    Kariya Y, Plumbridge J (2001) In: 7th symposium on microjoining and assembly in electronics, pp 383–388Google Scholar
  73. 73.
    Shohji I, Yoshida T, Takahashi T, Hioki S (2004) Mater Sci Eng A A366:50Google Scholar
  74. 74.
    Medvedev AS (1956) Metallovedenie i Obrabotka Metallov 7:16Google Scholar
  75. 75.
    Lampe BT (1976) Weld J 55(10):330sGoogle Scholar
  76. 76.
    Miyazawa Y, Ariga T (1999) In: Proceedings of the first international symposium on environmentally conscious design and inverse manufacturing, pp 616–619Google Scholar
  77. 77.
    Miyazawa Y, Ariga T (2001) Mater Trans Jpn Inst Metals 42(5):776Google Scholar
  78. 78.
    Chilton AC, Whitmore MA, Hampshire WB (1989) Sold Surf Mt Technol 3:21CrossRefGoogle Scholar
  79. 79.
    Gagliano RA, Fine ME, Vaynman S, Stolkarts V (1999) In: Julia R (ed) Advanced materials for the 21st century: proceedings of the 1999. Weertman Symposium, pp 107–116Google Scholar
  80. 80.
    Coyle RJ, Solan PP, Serafino AJ, Gahr SA (2000) In: Proceedings of the 50th electronic components and technology conference, pp 160–169Google Scholar
  81. 81.
    Tsui YK, Lee SW, Huang X (2002) In: Proceedings of the 4th international symposium on electronic materials and packaging, pp 478–481Google Scholar
  82. 82.
    Lee SWR, Tsui YK, Huang X, Yan CC (2002) In: Proceedings of the 2002 ASME international mechanical engineering congress and exposition, pp 1–4Google Scholar
  83. 83.
    Hasegawa K, Noudou T, Takahashi A, Nakaso A (2001) In: Proceedings of the 2001 SMTA international, pp 1–8Google Scholar
  84. 84.
    Li M, Lee KY, Olsen DR, Chen WT, Tan BTC, Mhaisalkar S (2002) IEEE Trans Electron Pack 25(3):185CrossRefGoogle Scholar
  85. 85.
    Chou GJS (2002) In: Proceedings of the 8th symposium on advanced packaging materials, pp 39–46Google Scholar
  86. 86.
    Law CMT, Wu CML (2004) In: Proceedings of HDP’04, pp 60–65Google Scholar
  87. 87.
    Wang Q, Johnson RW, Ma H, Gale WF (2005) In: 10th electronic circuit and world convention conference (ECWC 10)Google Scholar
  88. 88.
    Ding Y, Wang C, Li M, Bang HS (2004) Mater Sci Eng A384:314Google Scholar
  89. 89.
    Ma H, Suhling JC, Lall P, Bozack MJ (2006) In: Proceeding of the 56th electronic components and technology conference (ECTC), San Diego, CA, May 30–June 2, pp 849–864Google Scholar
  90. 90.
    Hall EO (1951) In: Proceedings of the physical society, vol 64, pp 747–753Google Scholar
  91. 91.
    Petch NJ (1953) J Iron Steel Inst 174:25Google Scholar
  92. 92.
    Lin J-K, Jang J-W, Hayes S, Frear D (2004) In: Proceeding of the 54th electronics packaging technology conference, pp 642–649Google Scholar
  93. 93.
    Wiese S, Meusel E, Wolter K-J (2003) In: Proceeding of the 53rd electronics packaging technology conference, pp 197–206Google Scholar
  94. 94.
    Banerji K, Darveaux R (1992) In: Proceeding of TMS-AIME symposium, pp 431–442Google Scholar
  95. 95.
    Sasaki K, Kobayashi T (2005) In: Proceeding of the ASME InterPACK’05Google Scholar
  96. 96.
    Ma H, Suhling JC, Lall P, Bozack MJ (2007) In: The proceeding of the 57th electronic components and technology conference (ECTC), pp 653–668Google Scholar
  97. 97.
    Jones WK, Liu Y, Zampino MA, Gonzalez G, Shah M (1997) Design and reliability of solders and solder interconnections, TMSGoogle Scholar
  98. 98.
    Jones WK, Liu Y, Zampino MA, Gonzalez G (1997) Adv Microelectron 24:30Google Scholar
  99. 99.
    Pang HLJ, Wang YP, Shi XQ, Wang ZP (1998) In: IEEE/CPMT electronics packaging technology conference, pp 184–189Google Scholar
  100. 100.
    Nose H, Sakane M, Tsukada T, Nishimura H (2003) J Electron Packaging 124:59CrossRefGoogle Scholar
  101. 101.
    Plumbridge WJ, Gagg CR (1999) J Mater Sci: Mater Electron 10:461CrossRefGoogle Scholar
  102. 102.
    Lang R, Tanaka H, Munegata O, Taguchi T, Narita T (2005) Mater Charact 54:223Google Scholar
  103. 103.
    Dai LH, Lee SR (2001) In: Proceeding of the ASME InterPACK’05, pp 307–313Google Scholar
  104. 104.
    Clech JP. Review and analysis of lead-free materials properties, NIST, Available at: http://www.metallurgy.nist.gov/solder/clech/Sn-Ag-Cu_Main.htm
  105. 105.
    Anand L (1985) Int J Plasticity 1:213zbMATHCrossRefGoogle Scholar
  106. 106.
    Pei M, Qu J (2005) In: International symposium on advanced packaging materials: processes, properties and interfaces, pp 45–49Google Scholar
  107. 107.
    Pang JHL, Low PTH, Xiong BS (2004) In: Proceeding of ITHERM’04, vol 2, pp 131–136Google Scholar
  108. 108.
    Rodgers B, Flood B, Punch J, Waldron F (2005) In: Proceedings of the 6th international conference on thermal, mechanical and multi-physics simulation and experiments in micro-electronics and micro-systems, pp 490–496Google Scholar
  109. 109.
    Xu L, Pang JHL (2005) In: Proceeding of the 55th electronics packaging technology conference, pp 357–362Google Scholar
  110. 110.
    Fouassier O, Heintz J-M, Chazelas J, Geffroy P-M, Silvaina J-F (2006) J Appl Phys 100:1CrossRefGoogle Scholar
  111. 111.
    Li D, Liu C, Conway P (2004) In: Proceeding of the 54th electronic components and technology conference, pp 128–133Google Scholar
  112. 112.
    Harrison MR, Vincent JH, Steen HAH (2001) Solder Surf Mt Technol 13(3):21CrossRefGoogle Scholar
  113. 113.
    Rhee H, Lucas JP, Subramanian KN (2002) J Mater Sci: Mater Electron 13:477CrossRefGoogle Scholar
  114. 114.
    Allen SL, Notis MR, Chromik RR, Vinci RP (2004) J Mater Res 19:1417CrossRefADSGoogle Scholar
  115. 115.
    Allen SL, Notis MR, Chromik RR, Vinci RP, Lewis DJ, Schaefer R (2004) J Mater Res 19:1425CrossRefADSGoogle Scholar
  116. 116.
    Xiao L, Liu J, Lai A, Ye L, Tholen A (2000) In: International symposium on advanced packaging materials, pp 145–151Google Scholar
  117. 117.
    Zhu F, Wang Z, Guan R, Zhang H (2005) In: 2005 international conference on asian green electronics, pp 107–112Google Scholar
  118. 118.
    Madeni J, Liu S, Siewert T. Casting of lead-free solder bulk specimens with various solidification rates, NIST Pb-free data. Available at: http://www.boulder.nist.gov/
  119. 119.
    Seelig K, Suraski D (2000) In: Proceeding of the 50th electronic components and technology conference, pp 1405–1409Google Scholar
  120. 120.
    Lead-free soldering guide from AIM Solder Inc (2003) http://www.psma.com/ul_files/forums/leadfree/aim_lead_free_guide.pdf
  121. 121.
    Enke NF, Kilinski TJ, Schroeder SA, Lesniak JR (1989) IEEE Trans Compon Hybrids Manuf Technol 12(4):459CrossRefGoogle Scholar
  122. 122.
    Technical reports for the lead free solder project: properties reports: room temperature tensile properties of lead-free solder alloys. Lead free solder project CD-ROM, National Center for Manufacturing Sciences (NCMS), 1998. Available at: http://www.boulder.nist.gov/
  123. 123.
    Lau JH, Chang C, Lee SWR, Chen TY, Cheng D, Tseng TJ, Lin, D (2000) In: Proceeding of NEPCON-west 2000, pp 554–562Google Scholar
  124. 124.
    Wong T, Matsunaga AH (1995) In: Proceeding of NEPCON west conference, 1995. Available at: http://www.boulder.nist.gov/
  125. 125.
    Sigelko JD, Subramanian KN (2000) Adv Mater Process 157(3):47Google Scholar
  126. 126.
    Welco Castings, Solder Data Sheet, 2 Hillyard Street, Hamilton, Ontario, Canada. Available at: http://www.boulder.nist.gov/
  127. 127.
    Hernandez CL, Vianco PT, Rejent JA (1998) Effect of interface microstructure on the mechanical properties of Pb-free hybrid microcircuit solder joints. IPC/SMTA Electronics Assembly Expo, pp S19-2-1. Available at: http://www.boulder.nist.gov/
  128. 128.
    Darveaux R, Banerji K (1992) IEEE Trans Compon Hybrids Manuf Technol 15(6):1013CrossRefGoogle Scholar
  129. 129.
    Xiao Q, Armstrong WD (2005) J Electron Mater 34(2):196CrossRefADSGoogle Scholar
  130. 130.
    Zhang Q, Dasgupta A, Haswell P (2003) In: Proceeding of the 53rd electronic components and technology conference, pp 1862–1868Google Scholar
  131. 131.
    Lau J, Dauksher W, Vianco P (2003) In: Proceeding of the 53rd electronic components and technology conference, pp 229–236Google Scholar
  132. 132.
    Pang JHL, Xiong BS, Low TH (2004) In: Proceeding of 54th electronic components and technology conference, pp 1333–1337Google Scholar
  133. 133.
    Schubert A, Dudek R, Auerswald E, Gollbardt A, Michel B, Reichl H (2003) In: Proceeding of the 53rd electronic components and technology conference, pp 603–610Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Auburn UniversityAuburnUSA

Personalised recommendations