Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 441–448 | Cite as

Effect of reverse and cyclic shear on the work-hardening of AISI 430 stainless steel

  • Wellington Lopes
  • Elaine Carballo Siqueira Corrêa
  • Haroldo Béria Campos
  • Maria Teresa Paulino Aguilar
  • Paulo Roberto CetlinEmail author
Article

Abstract

Sheet metal forming commonly involves various processing steps leading to complex strain paths. The work hardening of the metal under these circumstances is different from that observed for monotonic straining. The effect of the strain path on the hardening of materials is usually studied through sequences of standard mechanical tests, and the shear test is especially well adapted to such studies in sheet forming. Shear straining covering Bauschinger and cyclic strain paths were used in the analysis of the hardening of AISI 430 stainless steel sheets. The tests were conducted at 0°RD, 45°RD, and 90°RD (Rolling Direction) and for three effective strain amplitudes. The results indicate that the material presents Bauschinger effects and strain hardening transients that are sensitive to the testing direction. In addition, the cyclic straining leads to an oscillating stress pattern for the forward and reverse shearing cycles, which depends on the deformation amplitude.

Keywords

Strain Amplitude Strain Path Bauschinger Effect Stainless Steel Sheet Cyclic Shear 

Notes

Acknowledgements

The authors acknowledge the financial support for this research by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

References

  1. 1.
    Nesterova EV, Bacroix B, Teodosiu (2001) Mater Sci Eng A 309–310:495. doi: https://doi.org/10.1016/S0921-5093(00)01639-7 CrossRefGoogle Scholar
  2. 2.
    Dejmal I, Tirosh J, Shirizly A, Rubinsky L (2002) Int J Mech Sci 44:1245. doi: https://doi.org/10.1016/S0020-7403(02)00019-X CrossRefGoogle Scholar
  3. 3.
    Kobayashi S, Oh SI, Altan T (1988) Metal forming and the finite-element method. Oxford University Press, New York, USAGoogle Scholar
  4. 4.
    Lim TC, Ramakrishna S, Shang HM (1999) J Mater Process Technol 30:495. doi: https://doi.org/10.1016/S1359-8368(99)00015-3 Google Scholar
  5. 5.
    Karthik V, Comstock RJ Jr, Hershberger DL, Wagoner RH (2002) J Mater Process Technol 121:350. doi: https://doi.org/10.1016/S0924-0136(01)01219-5 CrossRefGoogle Scholar
  6. 6.
    Doyle LE, Morris JL, Leach JL, Schrader GF (1978) Processos de Fabricacão e Materiais para Engenheiros, 2nd edn. Edgard Blücher, São Paulo, BrazilGoogle Scholar
  7. 7.
    Nakazima K, Kikuma T, Hasuka K (1968) Yamata Tech Rep 264:141Google Scholar
  8. 8.
    Gosh AK, Hecker SS, Keeler SP (1984) In: Dieter GE (ed) Workability testing techniques. American Society for Metal, Metals Park, London, EnglandGoogle Scholar
  9. 9.
    Arrieux R (1997) J Mater Process Technol 64:25. doi: https://doi.org/10.1016/S0924-0136(96)02550-2 CrossRefGoogle Scholar
  10. 10.
    Kuroda M, Tvergaard V (2000) Int J Mech Sci 42:867. doi: https://doi.org/10.1016/S0020-7403(99)00029-6 CrossRefGoogle Scholar
  11. 11.
    Barlat F, Ferreira Duarte JM, Gracio JJ, Lopes AB, Rauch EF (2003) Int J Plast 19:1215. doi: https://doi.org/10.1016/S0749-6419(02)00020-7 CrossRefGoogle Scholar
  12. 12.
    Wilson DV, Zandrahimi M, Roberts WT (1990) Metall Mater 38:215. doi: https://doi.org/10.1016/0956-7151(90)90051-H CrossRefGoogle Scholar
  13. 13.
    Haddadi H, Bouvier S, Banu M, Maier C, Teodosiu C (2006) Int J Plast 22:2226. doi: https://doi.org/10.1016/j.ijplas.2006.03.010 CrossRefGoogle Scholar
  14. 14.
    Côrrea ECS, Aguilar MTP, Cetlin PR (2000) J Mater Sci Lett 779:781. doi: https://doi.org/10.1023/A:1006768706054 Google Scholar
  15. 15.
    Mazilkin AA, Straumal BB, Protasova SG, Dobatkin SV, Baretzky B (2008) J Mater Sci 3800:3805. doi: https://doi.org/10.1007/s.10853-007-2222-5 Google Scholar
  16. 16.
    Schmitt JH, Aernoudt E, Baudelet B (1985) Mater Sci Eng A 75:13CrossRefGoogle Scholar
  17. 17.
    Rauch EF, G’Sell C (1989) Mater Sci Eng A 111:71. doi: https://doi.org/10.1016/0921-5093(89)90199-8 CrossRefGoogle Scholar
  18. 18.
    Rauch EF, Gracio JJ, Barlat F (2007) Acta Mater 55:2939. doi: https://doi.org/10.1016/j.actamat.2007.01.003 CrossRefGoogle Scholar
  19. 19.
    Vincze G, Rauch EF, Gracio JJ, Barlat F, Lopes AB (2005) Acta Mater 53:1005. doi: https://doi.org/10.1016/j.actamat.2004.10.046 CrossRefGoogle Scholar
  20. 20.
    Lopes AB, Rauch EF, Gracio JJ (1999) Acta Mater 47:859. doi: https://doi.org/10.1016/S1359-6454(98)00417-0 CrossRefGoogle Scholar
  21. 21.
    Wilson DV, Bate PS (1994) Acta Metall Mater 42:1099. doi: https://doi.org/10.1016/0956-7151(94)90127-9 CrossRefGoogle Scholar
  22. 22.
    Sillekens WH, Dautzenberg JH, Kals J (1991) Proc ‘International Institution for Production Research—CIRP’, vol 40, p 255Google Scholar
  23. 23.
    Corrêa ECS, Aguilar MTP, Silva EMP, Cetlin PR (2003) J Mater Process Technol 142:282. doi: https://doi.org/10.1016/S0924-0136(03)00575-2 CrossRefGoogle Scholar
  24. 24.
    Jia WP, Fernandes JV (2003) Mater Sci Eng A 348:133. doi: https://doi.org/10.1016/S0921-5093(02)00630-5 CrossRefGoogle Scholar
  25. 25.
    Boger RK, Wagoner RH, Barlat F, Lee MG, Chung K (2005) Int J Plast 21:2319. doi: https://doi.org/10.1016/j.ijplas.2004.12.002 CrossRefGoogle Scholar
  26. 26.
    Chung JH, Lee DN (1993) J Mater Sci 4704:4712. doi: https://doi.org/10.1007/BF00414261 Google Scholar
  27. 27.
    Rauch EF (1992) Solid State Phenom 23:317CrossRefGoogle Scholar
  28. 28.
    Bouvier S, Haddadi H, Levée P, Teodosiu C (2006) J Mater Process Technol 172:96. doi: https://doi.org/10.1016/j.jmatprotec.2005.09.003 CrossRefGoogle Scholar
  29. 29.
    Hu Z (1994) Acta Metall Mater 42:3481. doi: https://doi.org/10.1016/0956-7151(94)90480-4 CrossRefGoogle Scholar
  30. 30.
    Zandrahimi M, Platias S, Price D, Barrett D, Bate PS, Roberts WT, Wilson DV (1989) Metall Mater Trans A 20:2471CrossRefGoogle Scholar
  31. 31.
    Boger RK (2006) Non-monotonic strain hardening and its constitutive representation. Ph.D. thesis, Ohio State University, OhioGoogle Scholar
  32. 32.
    Pinheiro IP, Barbosa R, Cetlin PR (2006) ISIJ Int 46:734CrossRefGoogle Scholar
  33. 33.
    Pinheiro IP, Barbosa R, Cetlin PR (2007) Mater Sci Eng A 458:136. doi: https://doi.org/10.1016/j.msea.2006.12.046 CrossRefGoogle Scholar
  34. 34.
    Dirras GF, Duval JL, Swiatnicki W (1999) Mater Sci Eng A 263:85. doi: https://doi.org/10.1016/S0921-5093(98)01082-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wellington Lopes
    • 1
  • Elaine Carballo Siqueira Corrêa
    • 2
  • Haroldo Béria Campos
    • 3
  • Maria Teresa Paulino Aguilar
    • 4
  • Paulo Roberto Cetlin
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Federal Center of Technological Education of Minas Gerais, CEFET/MGBelo HorizonteBrazil
  3. 3.Department of Mechanical EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Materials and Construction EngineeringFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations