Journal of Materials Science

, Volume 44, Issue 3, pp 835–842 | Cite as

Study of microstructural evolution during static recrystallization in a low alloy steel

  • Y. C. LinEmail author
  • Ming-Song Chen


Hot compression tests of 42CrMo steel were carried out on Gleeble-1500 thermo-mechanical simulator. The effects of forming temperature, strain rate, deformation degree, and initial austenite grain size on the microstructural evolution during static recrystallization in hot deformed 42CrMo steel were discussed. Based on the experimental results, the grain size model for static recrystallization was established. It is found that the effects of the processing parameters on the microstructural evolution during static recrystallization are significant, while those of the initial austenitic grain size are not obvious. Additionally, a good agreement between the experimental and predicted grain sizes was also obtained.


Microstructural Evolution Size Model 42CrMo Steel Static Recrystallization Deformation Degree 



This work was supported by 973 Program (Grant No.2006CB705401), National Natural Science Foundation of China (No. 50805147), China Postdoctoral Science Foundation (Grant No.20070410302), and the Postdoctoral Science Foundation of Central South University.


  1. 1.
    Hakamada M, Watazu A, Saito N, Iwasaki H (2008) J Mater Sci 43:2066. doi: CrossRefGoogle Scholar
  2. 2.
    Mandal S, Sivaprasad PV, Dube RK (2007) J Mater Eng Perform 16:672. doi: CrossRefGoogle Scholar
  3. 3.
    Dehghan-Manshadi A, Hodgson PD (2008) J Mater Sci 43:6272. doi: CrossRefGoogle Scholar
  4. 4.
    Fernández AI, Uranga P, López B, Rodriguez-ibabe JM (2000) ISIJ Int 40:893CrossRefGoogle Scholar
  5. 5.
    Poliak EI, Jonas JJ (2004) ISIJ Int 44:1874CrossRefGoogle Scholar
  6. 6.
    Elwazri AM, Essadiqi E, Yue S (2004) ISIJ Int 44:744CrossRefGoogle Scholar
  7. 7.
    Lin YC, Fang XL, Wang YP (2008) J Mater Sci 43:5508. doi: CrossRefGoogle Scholar
  8. 8.
    He XM, Yu ZQ, Liu GM, Wang WG, Lai XM (2009) Mater Des 30:166. doi: CrossRefGoogle Scholar
  9. 9.
    He XM, Yu ZQ, Lai XM (2008) Mater Lett 62:4181. doi: CrossRefGoogle Scholar
  10. 10.
    Lin YC, Chen MS, Zhong J (2008) Comput Mater Sci 42:470. doi: CrossRefGoogle Scholar
  11. 11.
    Lin YC, Chen MS, Zhong J (2008) Comput Mater Sci 44:316. doi: CrossRefGoogle Scholar
  12. 12.
    Morris DG, Gutierrez-Urrutia I, Muñoz-Morris MA (2007) J Mater Sci 42:1439. doi: CrossRefGoogle Scholar
  13. 13.
    Mandal S, Sivaprasad PV, Dube RK (2007) J Mater Sci 42:2724. doi: CrossRefGoogle Scholar
  14. 14.
    Xu LJ, Xing JD, Wei SZ, Peng T, Zhang YZ, Long R (2007) J Mater Sci 42:2565. doi: CrossRefGoogle Scholar
  15. 15.
    Kalaichelvi V, Sivakumar D, Karthikeyan R, Palanikumar K (2008) Mater Des. doi: CrossRefGoogle Scholar
  16. 16.
    Garcia-Mateo C, Capdevila C, Caballero FG, García de Andrés C (2007) J Mater Sci 42:5391. doi: CrossRefGoogle Scholar
  17. 17.
    Lins JFC, Sandim HRZ, Kestenbach HJ (2007) J Mater Sci 42:6572. doi: CrossRefGoogle Scholar
  18. 18.
    Maropoulos S, Karagiannis S, Ridley N (2007) J Mater Sci 42:1309. doi: CrossRefGoogle Scholar
  19. 19.
    Saha R, Ray RK (2008) J Mater Sci 43:207. doi: CrossRefGoogle Scholar
  20. 20.
    Karadeniz E (2008) Mater Des 29:251CrossRefGoogle Scholar
  21. 21.
    Lin YC, Chen MS, Zhong J (2008) Mech Res Commun 35:142. doi: CrossRefGoogle Scholar
  22. 22.
    Lin YC, Zhang J, Zhong J (2008) Comput Mater Sci 43:752. doi: CrossRefGoogle Scholar
  23. 23.
    Phaniraj MP, Behera BB, Lahiri AK (2006) J Mater Process Technol 178:388CrossRefGoogle Scholar
  24. 24.
    Nakata N, Militzer M (2005) ISIJ Int 45:82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Key Laboratory of Modern Complex Equipment Design and Extreme Manufacturing of the Ministry of Education, School of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina

Personalised recommendations