Journal of Materials Science

, Volume 44, Issue 1, pp 136–148 | Cite as

Microstructural phase evaluation of high-nitrogen Fe–Cr–Mn alloy powders synthesized by the mechanical alloying process

  • R. Amini
  • M. J. Hadianfard
  • E. Salahinejad
  • M. Marasi
  • T. Sritharan


In this study, the formation of Fe18Cr8MnxN alloys by mechanical alloying (MA) of the elemental powder mixtures was investigated by running the milling process under nitrogen and argon gas atmospheres. The effect of the milling atmosphere on the microstructure and phase contents of the as-milled powders was evaluated by X-ray diffraction and transmission electron microscopy. The thermal behavior of the alloyed powders was also studied by differential scanning calorimetry. The results revealed that in the samples milled under nitrogen, three different phases, namely ferrite (α), austenite (γ), and a considerable amount of amorphous phase are present in the microstructure. In contrast, in the samples milled under argon, the structure contains the dominant crystalline ferrite phase. By progression of MA under the nitrogen atmosphere, the ferrite-to-austenite phase transformation occurs; meanwhile, the quantity and stability of the amorphous phase increase, becoming the dominant phase after 72 h and approaching 83.7 wt% within 144 h. The quantitative results also showed that by increasing the milling time, grain refinement occurs more significantly under the nitrogen atmosphere. It was realized that the infused nitrogen atoms enhance the grain refinement phenomenon and act as the main cause of the amorphization and α-to-γ phase transformation during MA. It was also found out that the dissolved nitrogen atoms suppress the crystallization of the amorphous phase during the heating cycle, thereby improving the thermal stability of the amorphous phase.


Austenite Milling Amorphous Phase Mechanical Alloy Stack Fault Energy 



The authors would like to thank Iran Alloyed Steel Company for LECO gas analysis. Shiraz University Research Council and Nanyang Technological University (NTU) are also acknowledged for their support to this study.


  1. 1.
    Nakada N, Hirakawa N, Tsuchiyama T et al (2007) Scr Mater 57:153CrossRefGoogle Scholar
  2. 2.
    Sumita M, Hanawa T, Teoh SH (2004) Mater Sci Eng C 24:753CrossRefGoogle Scholar
  3. 3.
    Balachandran G, Bhatia ML, Ballal NB et al (2001) ISIJ Int 41:1018CrossRefGoogle Scholar
  4. 4.
    Fréchard S, Redjaïmia A, Lach E et al (2008) Mater Sci Eng A 480:89CrossRefGoogle Scholar
  5. 5.
    Murakami R, Aoyama Y, Tsuchida N et al (2007) Mater Sci Forum 561–565:37CrossRefGoogle Scholar
  6. 6.
    Cisneros MM, López HF, Mancha H et al (2002) Metall Mater Trans A 33:2139CrossRefGoogle Scholar
  7. 7.
    Cisneros MM, López HF, Mancha H et al (2005) Metall Mater Trans A 36:1309Google Scholar
  8. 8.
    Méndez M, Mancha H, Cisneros MM et al (2002) Metall Mater Trans A 33:3273CrossRefGoogle Scholar
  9. 9.
    Mancha H, Mendoza G, Belmares S et al (2001) Mater Sci Forum 360–362:189CrossRefGoogle Scholar
  10. 10.
    Kataoka K, Tsuchiyama T, Goto H et al (2003) Trans Ind Inst Metal 56:527Google Scholar
  11. 11.
    Enayati MH, Bafandeh MR (2008) J Alloys Compd 454:228CrossRefGoogle Scholar
  12. 12.
    Jiang JZ, Gente C, Bormann R (1998) Mater Sci Eng A 242:268CrossRefGoogle Scholar
  13. 13.
    Zhu LH, Huang QW, Zhao HF (2004) Scr Mater 51:527CrossRefGoogle Scholar
  14. 14.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  15. 15.
    Wagner CNJ, Boldrick MS (1993) J Alloys Compd 194:295CrossRefGoogle Scholar
  16. 16.
    Johnson WL (1988) Mater Sci Eng 97:1CrossRefGoogle Scholar
  17. 17.
    Chattopadhyay PP, Samanta A, Lojkowski W et al (2007) Metall Mater Trans A 38:2298CrossRefGoogle Scholar
  18. 18.
    Shen G, Jiang DM, Lin F et al (2005) Physica B 367:137CrossRefGoogle Scholar
  19. 19.
    Du SW, Ramanujan RV (2005) J Magn Magn Mater 292:286CrossRefGoogle Scholar
  20. 20.
    Popa F, Isnard O, Chicinas I et al (2007) J Magn Magn Mater 316:e900CrossRefGoogle Scholar
  21. 21.
    Shaham D, Rawers J, Zolotoyabko E (1996) Mater Lett 27:41CrossRefGoogle Scholar
  22. 22.
    Munitz A, Kimmel G, Rawers JC et al (1997) Nanostruct Mater 8:867CrossRefGoogle Scholar
  23. 23.
    Rawers JC, Govier D, Doan R (1996) Mater Sci Eng A 220:162CrossRefGoogle Scholar
  24. 24.
    Koyano T, Takizawa T, Fukunaga T et al (1993) Jpn J Appl Phys 32:1524CrossRefGoogle Scholar
  25. 25.
    Ogino Y, Murayama S, Yamasaki T (1991) J Less-Common Met 168:221CrossRefGoogle Scholar
  26. 26.
    Ogino Y, Yamasaki T, Murayama S et al (1990) J Non-Cryst Solids 117–118:737CrossRefGoogle Scholar
  27. 27.
    Miura H, Omuro K, Ogawa H (1996) ISIJ Int 36:951CrossRefGoogle Scholar
  28. 28.
    Aoki K, Memezawa A, Masumoto T (1992) Appl Phys Lett 01(9):1037CrossRefGoogle Scholar
  29. 29.
    Fukunaga T, Ishikawa E, Koyano T et al (1995) Physica B 213–214:526CrossRefGoogle Scholar
  30. 30.
    Fukunaga T, Kuroda N, Lee CH et al (1994) J Non-Cryst Solids 176:98CrossRefGoogle Scholar
  31. 31.
    Winburn RS, Grier DG, Mccarthy GJ et al (2000) Powder Diffr 15:163CrossRefGoogle Scholar
  32. 32.
    De La Torre AG, Bruque S, Aranda MAG (2001) J Appl Cryst 34:196CrossRefGoogle Scholar
  33. 33.
    Kemethmüller S, Roosen A, Goetz-Neunhoeffer F et al (2006) J Am Ceram Soc 89:2632CrossRefGoogle Scholar
  34. 34.
    Gualtieri ML, Prudenziati M, Gualtieri AF (2006) Surf Coat Technol 201:2984CrossRefGoogle Scholar
  35. 35.
    Whitfield PS, Mitchell LD (2003) J Mater Sci 38:4415. doi: CrossRefGoogle Scholar
  36. 36.
    Fecht HJ (1995) Nanostruct Mater 6:33CrossRefGoogle Scholar
  37. 37.
    Yelsukov EP, Dorofeev GA, Zagainov AV et al (2004) Mater Sci Eng A 369:16CrossRefGoogle Scholar
  38. 38.
    Mohamed FA (2003) Acta Mater 51:4107CrossRefGoogle Scholar
  39. 39.
    Eckert J, Holzer JC, Kill CEIII et al (1992) J Mater Res 7:1751CrossRefGoogle Scholar
  40. 40.
    Zhao YH, Zhu YT, Liao XZ et al (2007) Mater Sci Eng A 463:22CrossRefGoogle Scholar
  41. 41.
    Buffington FS, Cohen M (1954) Acta Metall 2:660CrossRefGoogle Scholar
  42. 42.
    Borg RJ, Diens G (1988) Solid state diffusion. Academic Press, Boston, p 80Google Scholar
  43. 43.
    Lin S, Ledbetter H (1993) Mater Sci Eng A 167:81CrossRefGoogle Scholar
  44. 44.
    Ledbetter HM, Austin MW (1985) Mater Sci Eng 70:143CrossRefGoogle Scholar
  45. 45.
    Mohamed FA, Xun Y (2003) Mater Eng A 358:178CrossRefGoogle Scholar
  46. 46.
    Schramm RE, Reed RP (1975) Metall Trans A 6:1345CrossRefGoogle Scholar
  47. 47.
    Stoltz RE, Van der Sande JB (1980) Metall Trans A 11:1033CrossRefGoogle Scholar
  48. 48.
    Dulieu D, Nutting J (1964) Iron Steel Inst 86:140Google Scholar
  49. 49.
    Kibey S, Liu JB, Curtis MJ, Johnson DD et al (2006) Acta Mater 54:2991CrossRefGoogle Scholar
  50. 50.
    Jiang B, Qi X, Zhou W et al (1996) Scr Mater 34:1437CrossRefGoogle Scholar
  51. 51.
    Fujikura M, Takada K, Ishida K (1975) ISIJ Int 15:464Google Scholar
  52. 52.
    Yakubtsovi A, Ariapour A, Perovic DD (1999) Acta Mater 47:1271CrossRefGoogle Scholar
  53. 53.
    Gavriljuk V, Petrov Y, Shanina B (2006) Scr Mater 55:537CrossRefGoogle Scholar
  54. 54.
    Byranes MLG, Grujicic M, Owen WS (1987) Acta Metall 35:1853CrossRefGoogle Scholar
  55. 55.
    Werner E (1998) Mater Sci Eng A 101:93Google Scholar
  56. 56.
    Nieh TG, Wadsworth J (1991) Scr Metall 25:955CrossRefGoogle Scholar
  57. 57.
    Egami T, Waseda Y (1984) J Non-Cryst Solid 64:113CrossRefGoogle Scholar
  58. 58.
    Van der Kolk GJ, Miedema AR, Niessen AK (1988) J Less-Common Met 145:1CrossRefGoogle Scholar
  59. 59.
    Nishizawa T (1973) Bull Jpn Inst Met 12:401CrossRefGoogle Scholar
  60. 60.
    Meng Q, Zhou N, Rong Y et al (2002) Acta Mater 50:4563CrossRefGoogle Scholar
  61. 61.
    Qiu C (1993) Metall Trans A 24:2393CrossRefGoogle Scholar
  62. 62.
    Weber TA, Stillinger FH (1985) Phys Rev B 31:1954CrossRefGoogle Scholar
  63. 63.
    Sharma S, Suryanarayana C (2008) J Appl Phys 103:013504-1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. Amini
    • 1
    • 2
  • M. J. Hadianfard
    • 1
  • E. Salahinejad
    • 1
  • M. Marasi
    • 1
  • T. Sritharan
    • 2
  1. 1.Department of Materials Science and Engineering, School of EngineeringShiraz UniversityShirazIran
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations