Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 108–113 | Cite as

Rapid synthesis and morphology control of nickel powders via a microwave-assisted chemical reduction method

  • Dayong LiuEmail author
  • Shan RenEmail author
  • Guoshuai Wang
  • Lishi Wen
  • Jie Yu
Article

Abstract

Nickel powders with different morphologies, such as sphere, chain, and thorn-like nickel wire have been successfully synthesized by hydrazine reduction of NiCl2 in the presence of polyvinyl pyrrolidone (PVP) by using microwave-assisted chemical reduction method. The obtained products were characterized by XRD, SEM, TEM, and SAED techniques. Characterization by TEM and SAED showed that as-produced nickel powders were formed by self-assembly and aggregation of nanometer-sized nickel crystallites. PVP served as the structure directing agents and plays a key role for the morphology transformation of the nickel powders. In addition, compared with conventional heating method, microwave irradiation heating was in favor of the formation of nickel wires. The resultant nickel wires showed excellent electrical properties in the nickel wires/epoxy composite.

Keywords

Nickel Anodic Aluminum Oxide Template Nickel Powder Structure Directing Agent Volume Resistivity 

Notes

Acknowledgements

This research was financially supported by both the Science & Technology project of Guangzhou city and the Science & Technology Department of Guangdong Province, China.

References

  1. 1.
    Duan YW, Li JG (2004) Mater Chem Phys 87:452CrossRefGoogle Scholar
  2. 2.
    Ni XM, Zhao QB, Zhang DG, Yang DD, Zheng HG (2005) J Cryst Growth 280:217CrossRefGoogle Scholar
  3. 3.
    Lee JY, Lee JH, Hong SH, Lee YK, Choi JY (2003) Adv Mater 15:1655CrossRefGoogle Scholar
  4. 4.
    Levi G, Scheu C, Kaplan WD (2001) Interface Sci 9:213CrossRefGoogle Scholar
  5. 5.
    Liu DY, Ren S, Wu H, Zhang QT, Wen LS (2008) J Mater Sci 43:1974. doi: https://doi.org/10.1007/s10853-008-2459-7 CrossRefGoogle Scholar
  6. 6.
    Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Nano Lett 1:565CrossRefGoogle Scholar
  7. 7.
    Franquin D, Monteverdi S, Molina S, Bettahar MM, Fort Y (1999) J Mater Sci 34:4481. doi: https://doi.org/10.1023/A:1004637221636 CrossRefGoogle Scholar
  8. 8.
    Kurinec SK, Okeke N, Gupta SK, Zhang H, Xiao TD (2006) J Mater Sci 41:8181. doi: https://doi.org/10.1007/s10853-006-0393-0 CrossRefGoogle Scholar
  9. 9.
    Chou KS, Huang KC (2001) J Nanopart Res 3:127CrossRefGoogle Scholar
  10. 10.
    Yu KN, Kim DJ, Chung HS, Liang HZ (2003) Mater Lett 57:3992CrossRefGoogle Scholar
  11. 11.
    Couto GG, Klein JJ, Schreiner WH, Mosca DH, de Oliveira AJA, Zarbin AJG (2007) J Colloid Interface Sci 311:461CrossRefGoogle Scholar
  12. 12.
    Zeng QH, Jiang XC, Yu AB, Lu GQ (2007) Nanotechnology 18:035708CrossRefGoogle Scholar
  13. 13.
    Krichevski Q, Kalisman YL, Szwarcman D, Lereah Y, Markovich G (2007) J Colloid Interface Sci 314:304CrossRefGoogle Scholar
  14. 14.
    Shen M, Du Y, Yang P, Jiang L (2005) J Phys Chem Solids 66:1628CrossRefGoogle Scholar
  15. 15.
    Bitter JH, Van der Lee MK, Slotboom AGT, Dillen AJV, Jong KPD (2003) Catal Lett 89:139CrossRefGoogle Scholar
  16. 16.
    Wang C, Fang J, He J, Zhou W, Stokes K (2003) J Colloid Interface Sci 260:440CrossRefGoogle Scholar
  17. 17.
    Guo L, Liang F, Wen XG, Yang SH, He L, Zheng WZ, Chen CP, Zhong QP (2007) Adv Funct Mater 17:425CrossRefGoogle Scholar
  18. 18.
    Komarneni S, Katsuki H, Li D, Bhalla AS (2004) J Phys Condens Matter 16:1305CrossRefGoogle Scholar
  19. 19.
    Shirai T, Yasuoka M, Watari K (2008) Mater Sci Eng 148:221CrossRefGoogle Scholar
  20. 20.
    Lee JH, Kamada K, Enomoto N, Hojo JC (2007) J Colloid Interface Sci 316:887CrossRefGoogle Scholar
  21. 21.
    Rivas BL, Pereira ED, Villoslada IM (2003) Prog Polym Sci 28:173CrossRefGoogle Scholar
  22. 22.
    Zhang ZT, Zhao B, Hu LM (1996) J Solid State Chem 121:105CrossRefGoogle Scholar
  23. 23.
    Wang Q, Xu Z, Yin H, Nie Q (2005) Mater Chem Phys 90:73CrossRefGoogle Scholar
  24. 24.
    Van der Put PJ (1998) In: Van der Put PJ (ed) The inorganic chemistry of materials: how to make things out of elements. Plenum, New York, p 278Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of TechnologyUniversity TownXili, ShenzhenPeople’s Republic of China
  2. 2.The Center for Nano-technology Research, State Key Laboratory of Optoelectronic Material and Technologies, School of Physical Science and TechnologySun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations