Journal of Materials Science

, Volume 44, Issue 1, pp 93–101 | Cite as

High-damping and high-rigidity composites of Al2TiO5–MgTi2O5 ceramics and acrylic resin

  • T. ShimazuEmail author
  • H. Maeda
  • E. H. Ishida
  • M. Miura
  • N. Isu
  • A. Ichikawa
  • K. Ota


High-damping materials are widely used in engineering fields. In order to increase the precision of vibration control to different levels, high-damping materials with high-rigidity are required. This study attempts to develop a new high-damping high-rigidity material using ductile ceramics based on the Al2TiO5–MgTi2O5 system, which has many continuous microcracks along the grain boundaries. Ductile ceramics have high internal friction (Q−1 = 0.01–0.037), but very low rigidity (<10 GPa). The rigidity of Al2TiO5–MgTi2O5 ceramics was improved by combining them with a polymer such as acrylic resin. The Young’s modulus and internal friction of the composites of Al2TiO5–MgTi2O5 ceramics and acrylic resin are investigated. They show high-damping capacity (Q−1 = 0.03–0.04) with high rigidity (E = 50–60 GPa), and their properties depend on those of the polymer. Thus, the composites fabricated using the above method can serve as high-damping high-rigidity materials.


Acrylic Resin Internal Friction Storage Modulus High Rigidity Base Ceramic 



This study was supported by the Ministry of Economy, Trade and Industry for Regional Consortium Research Development Work 2003–2005, and by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 18201014).


  1. 1.
    Igata N (2004) Kinzoku 74:237Google Scholar
  2. 2.
    Kawahara K, Yin F (2003) Seishin Corp Technical ReportGoogle Scholar
  3. 3.
    Kawahara K (2006) Key Eng Mat 319:217CrossRefGoogle Scholar
  4. 4.
    Igata N, Nishiyama K, Ota K, Yin Y, Wuttig W, Golovin IS, Humbeeck JV, San Juan J (2003) J Alloys Compd 355:230CrossRefGoogle Scholar
  5. 5.
    Sugimoto K (1974) Trans Iron Steel Inst Jpn 60:2203CrossRefGoogle Scholar
  6. 6.
    Hedley JA (1968) Metall Sci J 2:129CrossRefGoogle Scholar
  7. 7.
    Yin F, Ohsawa Y, Satoh A, Kawahara K (1998) Z Metallkd 89:481Google Scholar
  8. 8.
    Fukuhara M, Yin F, Ohsawa Y, Takamori S (2006) Mater Sci Eng A 442:439CrossRefGoogle Scholar
  9. 9.
    Fantozzi G (2001) In: Schaller R, Fantozzi G, Gremaud G (eds) Mechanical spectroscopy of Q−1 2001: with applications to materials science. Mater science forum. Trans Tech Pub. Ltd., Zürich, p 3Google Scholar
  10. 10.
    Matsushita K, Kuratani S, Okamoto T, Shimada M (1984) J Mater Sci Lett 3:345CrossRefGoogle Scholar
  11. 11.
    Pezzotti G, Ota K (1997) J Ceram Soc Jpn 105:1CrossRefGoogle Scholar
  12. 12.
    Basu B, Donzel L, Van Humbeeck J, Vleugets J, Schaller R, Van Der Biest O (1999) Scr Mater 40:759CrossRefGoogle Scholar
  13. 13.
    Pezzotti G, Ota K (1998) Phys Rev B 58:11880CrossRefGoogle Scholar
  14. 14.
    Takata S, Ueno S, Kawakami Y, Akatsu T, Tanabe Y, Yasuda E, Waku Y (2001) J Ceram Soc Jpn 109:561CrossRefGoogle Scholar
  15. 15.
    Nishimura H, Ikuhara Y, Ota K, Pezzotti K (2002) Mater Trans 43:1552CrossRefGoogle Scholar
  16. 16.
    Sato S, Serizawa H, Araki H, Noda T, Kohyama A (2003) J Alloys Compd 355:142CrossRefGoogle Scholar
  17. 17.
    Matsushita K, Okamoto T, Shimada M (1985) J Phys 46:549Google Scholar
  18. 18.
    Fang QF, Liu T, Li C, Wang XP, Zhang GG (2006) Key Eng Mater 319:167CrossRefGoogle Scholar
  19. 19.
    Fantozzi G, Bourim EM, Kazemi S (2006) Key Eng Mater 319:157CrossRefGoogle Scholar
  20. 20.
    Lambrinou K, Van der Biest O, Lube T, Tassini N, Patsias S, Chalvet F, Portu G (2007) J Eur Ceram 27:1307CrossRefGoogle Scholar
  21. 21.
    Shimazu T, Miura M, Isu N, Ogawa T, Ichikawa A, Ishida EH (2006) Proceedings of 3rd water dynamics, Sendai, Japan, p 69Google Scholar
  22. 22.
    Shimazu T, Miura M, Kuno H, Isu N, Ota K, Ishida EH (2006) Key Eng Mater 319:173CrossRefGoogle Scholar
  23. 23.
    Shimazu T, Miura M, Isu N, Ogawa T, Ota K, Maeda H, Ishida EH (2008) Mater Sci Eng A 487:340CrossRefGoogle Scholar
  24. 24.
    Ashby MF (1992) Materials selection in mechanical design. Pergamon Press Ltd, Oxford, p 109Google Scholar
  25. 25.
    Berezhnoi AS, Gul’ko NV (1955) Ukrain Khim Zhur 21(2):158Google Scholar
  26. 26.
    Cleveland JJ, Bradt RC (1978) J Am Ceram Soc 61:478CrossRefGoogle Scholar
  27. 27.
    Boden P, Glasser FP (1973) Trans J Br Ceram Soc 72:215Google Scholar
  28. 28.
    Bayer G (1971) J Less-Common Met 24:129CrossRefGoogle Scholar
  29. 29.
    Morosin B, Lynch RW (1972) Acta Cryst B28:1040CrossRefGoogle Scholar
  30. 30.
    Zhang J, Perez RJ, Lavernia EJ (1993) J Mater Sci 28:2395. doi: CrossRefGoogle Scholar
  31. 31.
    Maekawa Z, Hamada H, Gotoh A, Miyake K (1992) Proceedings of 35th Japan congress on materials research, p 177Google Scholar
  32. 32.
    Daimon K (1990) J Ceram Soc Jpn 98:365CrossRefGoogle Scholar
  33. 33.
    Kawaharav K, Yin F (1999) J Vac Soc Japan 42:11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • T. Shimazu
    • 1
    • 2
    Email author
  • H. Maeda
    • 1
  • E. H. Ishida
    • 1
  • M. Miura
    • 2
  • N. Isu
    • 2
  • A. Ichikawa
    • 3
  • K. Ota
    • 4
  1. 1.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan
  2. 2.General Research Institute of TechnologyINAX CorporationTokonameJapan
  3. 3.Sanwa Yuka Kogyo Co., LtdKariyaJapan
  4. 4.Q INVERSE IncorporatedMinoJapan

Personalised recommendations