Advertisement

Journal of Materials Science

, Volume 44, Issue 7, pp 1726–1733 | Cite as

Spallation of two thermal barrier coating systems: experimental study of adhesion and energetic approach to lifetime during cyclic oxidation

  • P.-Y. Théry
  • M. PoulainEmail author
  • M. Dupeux
  • M. Braccini
Interface Science in Thermal Barrier Coatings

Abstract

To understand the degradation of two thermal barrier coating (TBC) systems, we determined the adhesion energy between the bondcoat and the topcoat and its evolution during cyclic oxidation at 1,100 °C, by means of a modified 4-point bending test. An yttria stabilized zirconia (YSZ) ceramic topcoat was deposited by electron beam physical vapour deposition (EBPVD) on a Ni-based superalloy with either an intermediate β-(Ni,Pt)Al bondcoat or a newly developed Zr-doped β-NiAl bondcoat. Although a similar evolution of the adhesion energy during cyclic oxidation has been recorded for both systems, observations of the fracture surfaces combined with a microstructure study revealed different degradation mechanisms. An energetic model of spallation is applied to predict their lifetime. According to this approach, the TBC failure is induced by the accumulation of strain energy in the ceramic layers and resisted by the interfacial fracture toughness. The predicted lifetime is consistent with experiments for both systems.

Keywords

Thermal Barrier Coating Yttria Stabilize Zirconia Thermally Grown Oxide Cyclic Oxidation Adhesion Energy 

Notes

Acknowledgements

The authors are indebted to Dr. R. Mevrel (ONERA) for helpful discussions during the course of this study, and to Dr. N. Terrien (ONERA) for his assistance in the PLPS measurements.

References

  1. 1.
    Mumm DR, Evans AG (2000) Acta Mater 48:1815CrossRefGoogle Scholar
  2. 2.
    Vasinonta A, Beuth JL (2001) Eng Fract Mech 68:843CrossRefGoogle Scholar
  3. 3.
    Watanabe M, Kuroda S, Yokoyama K et al (2008) Surf Coat Technol 202:1746CrossRefGoogle Scholar
  4. 4.
    Guerre C (2002) PhD Thesis, Ecole Nationale Supérieure des Mines de ParisGoogle Scholar
  5. 5.
    Kim S, Liu Y, Kagawa Y (2007) Acta Mater 55:3771CrossRefGoogle Scholar
  6. 6.
    Arai M, Okajima Y, Kishimoto K (2007) Eng Fract Mech 74:2055CrossRefGoogle Scholar
  7. 7.
    Charalambides PG, Jund J, Evans AG, McMeeking RM (1989) J Appl Mech 56:77CrossRefGoogle Scholar
  8. 8.
    Gan Z, Mhaisalkar SG, Chen Z et al (2005) Surf Coat Technol 198:85CrossRefGoogle Scholar
  9. 9.
    Li H, Khor KA, Cheang P (2007) Eng Fract Mech 74:1894CrossRefGoogle Scholar
  10. 10.
    Hofinger I, Oechsner M, Bahr HA et al (1998) Int J Fracture 92:213CrossRefGoogle Scholar
  11. 11.
    Quian L, Zhu S, Kagawa Y (2003) In: 27th international conference on advanced ceramics and composites: a (Cocoa Beach, FL, USA), vol 24, issue 3, p 503Google Scholar
  12. 12.
    Yamasaki Y, Schmidt A, Scholz A (2006) Surf Coat Technol 201:744CrossRefGoogle Scholar
  13. 13.
    Bahr HA, Balke H, Fett T et al (2003) Mater Sci Eng A 362:2CrossRefGoogle Scholar
  14. 14.
    Théry PY (2007) Thèse de Doctorat, Universite Joseph Fourier Grenoble, France, Matériaux et Génie des ProcédésGoogle Scholar
  15. 15.
    Théry PY, Poulain M, Dupeux M, Braccini M (2007) Surf Coat Technol 202:648CrossRefGoogle Scholar
  16. 16.
    Noebe RD, Bowman RR, Nathal MV (1993) Int Mater Rev 38:193CrossRefGoogle Scholar
  17. 17.
    Li YZ, Wang C, Chan HM et al (1999) J Am Ceram Soc 82:1497CrossRefGoogle Scholar
  18. 18.
    Evans AG, Mumm DR, Hutchinson JW et al (2001) Prog Mater Sci 46:505CrossRefGoogle Scholar
  19. 19.
    Hutchinson JW, Evans AG (2002) Surf Coat Technol 149:179CrossRefGoogle Scholar
  20. 20.
    Xu T, Faulhaber S, Mercer C et al (2004) Acta Mater 52:1439CrossRefGoogle Scholar
  21. 21.
    Spitsberg IT, Mumm DR, Evans AG (2005) Mater Sci Eng A 394:176CrossRefGoogle Scholar
  22. 22.
    Zhao X, Wang X, Xiao P (2006) Surf Coat Technol 200:5946CrossRefGoogle Scholar
  23. 23.
    Shih CF (1991) Mater Sci Eng A 143:77CrossRefGoogle Scholar
  24. 24.
    Faulhaber S, Mercer C, Moon MW et al (2006) J Mech Phys Solids 54:1004CrossRefGoogle Scholar
  25. 25.
    Hutchinson JW, Suo Z (1992) Adv Appl Mech 29:63CrossRefGoogle Scholar
  26. 26.
    Wang JS, Evans AG (1998) Acta Mater 46:4993CrossRefGoogle Scholar
  27. 27.
    Wang JS, Evans AG (1999) Acta Mater 47:699CrossRefGoogle Scholar
  28. 28.
    Lipkin DM, Clarke DR, Hollatz M et al (1997) Corr Sci 39:231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P.-Y. Théry
    • 1
  • M. Poulain
    • 1
    Email author
  • M. Dupeux
    • 2
  • M. Braccini
    • 2
  1. 1.ONERA-DMSMChatillonFrance
  2. 2.SIMAPSt Martin d’HeresFrance

Personalised recommendations